Memory Mapping Methods In The Super Nintendo

Not only is the Super Nintendo an all-around great platform, both during its prime in the 90s and now during the nostalgia craze, but its relative simplicity compared to modern systems makes it a lot more accessible from a computer science point-of-view. That means that we can get some in-depth discussion on how the Super Nintendo actually does what it does, and understand most of it, like this video from [Retro Game Mechanics Explained] which goes into an incredible amount of detail on the mechanics of the SNES’s memory system.

Two of the interesting memory systems the SNES uses are called DMA and HDMA. DMA stands for direct memory access, and is a way for the Super Nintendo to access memory independently of the CPU. The advantages to this are that it’s incredibly fast compared to more typical methods of accessing memory. This isn’t particulalry unique, but the HDMA system is. It allows the SNES to do all kinds of interesting tricks with its video output display like changing color gradients and doing all kinds of masking effects.

If you’re interested in the inner workings of classic consoles like the SNES, this video gets way down in the weeds in the system itself. It’s interesting to see how programmers were able to squeeze more capability from these limited (by modern standards) systems by manipulating memory like the DMA and HDMA systems do.  [Retro Game Mechanics Explained] is a great resource for exploring in-depth aspects of lots of classic games, like how speedrunners can execute arbitrary code in old Mario games.

Continue reading “Memory Mapping Methods In The Super Nintendo”

Untether From Your Location With A VPN

By now, most of us know the perks of using a VPN: they make private one’s online activity (at least from your ISP’s point of view, probably), and they can also make it appear as if you are in a different locale than you physically are. This is especially important for trying to watch events such as the Olympics which might air different things at different times in different countries. It’s also starting to be an issue with services like Netflix which allow content in some areas but not others.

While VPNs can help solve this problem, it can be tedious to set them up for specific purposes like this if you have to do it often. Luckily, [clashtherage] has created a router with a Raspberry Pi that takes care of all of the complicated VPN routing automatically. In much the same way that another RPi router we’ve seen eliminates ads from all of your internet traffic, this one takes all of your traffic and sends it to a locale of your choosing. (In theory one could use both at the same time.)

Obviously this creates issues for Netflix as a company, and indeed a number of services (like craigslist, for example) are starting to block access to their sites if they detect that a VPN is being used. Of course, this only leads to an arms race of VPNs being blocked, and them finding ways around the obstacles, and on and on. If only IPv6 was finally implemented, we might have a solution for all of these issues.

5 Digit Security Code Activated Relay Using Mostly Discrete Circuitry

alarm keypad

Let’s rollback the hobby electronics calendar a few decades with [myvideoisonutube’s] alarm activation control circuit using a matrix style phone keypad. The circuit is quite old using CMOS 4081 with 4 ‘AND’ gates to hardwire the access code. [myvideoisonutube] references [Ron’s] “Enhanced 5-Digit Alarm Keypad” schematic for this build changing the recommend keypad with a more common matrix style keypad found in touch pad phones. These types of matrix keypads wouldn’t work outright for the input so he cut some traces and added hookup wires to transform it into a keypad with common terminals and separately connected keys. We love seeing such hacked donor hardware even when it requires extensive modifications. [Ron’s] source circuit included a simple enough to build tactical button keypad if you can’t find a suitable donor phone.

Learning how to use mostly discrete components instead of a microcontroller would be the core objective to build this circuit outside of needing a key-code access point or other secure 12 V relay activated device. Such a device would be quite secure requiring a 4 digit “on” code and 5 digits for “off”. You couldn’t just pull off the keypad and hotwire or short something to gain access either. The 4 digit on “feature” does knock the security down quite a lot. However, all keys not in the access code are connected to the same point so you could increase your security by using a pad with more keys.

On [Ron’s] site you will find a detailed construction guide including top and bottom view for placement of all the components on veroboard. Join us after the break to watch [myvideoisonutube] demo his version.

Continue reading “5 Digit Security Code Activated Relay Using Mostly Discrete Circuitry”