Google Will Require Developer Verification Even For Sideloading

Do you like writing software for Android, perhaps even sideload the occasional APK onto your Android device? In that case some big changes are heading your way, with Google announcing that they will soon require developer verification for all applications installed on certified Android devices – meaning basically every mainstream device. Those of us who have distributed Android apps via the Google app store will have noticed this change already, with developer verification in the form of sending in a scan of your government ID now mandatory, along with providing your contact information.

What this latest change thus effectively seems to imply is that workarounds like sideloading or using alternative app stores, like F-Droid, will no longer suffice to escape these verification demands. According to the Google blog post, these changes will be trialed starting in October of 2025, with developer verification becoming ‘available’ to all developers in March of 2026, followed by Google-blessed Android devices in Brazil, Indonesia, Thailand and Singapore becoming the first to require this verification starting in September of 2026.

Google expects that this system will be rolled out globally starting in 2027, meaning that every Google-blessed Android device will maintain a whitelist of ‘verified developers’, not unlike the locked-down Apple mobile ecosystem. Although Google’s claim is that this is for ‘security’, it does not prevent the regular practice of scammers buying up existing – verified – developer accounts, nor does it harden Android against unscrupulous apps. More likely is that this will wipe out Android as an actual alternative to Apple’s mobile OS offerings, especially for the hobbyist and open source developer.

From Smartphone To A Home Server

Some people like their homelabs to be as big and fancy as possible, with racks of new or surplus server hardware sucking down power. [Hardware Haven] evidently has the opposite idea, given he just made a video about making the cheapest, smallest server possible: an Android phone.

Sure, it’s not going to be streaming terabytes of data at multiple gigabytes per second, but that’s not everyone’s use case. Don’t forget, flagship phones had multiple cores and gigabytes of RAM a decade ago, so even an old and busted smartphone has more than enough power for something like Home Assistant, which is what gets installed in this video.

After considering loading termux and rooting his device for Docker-on-Android, he opted for postmarketOS, the premiere Linux for old smartphones. That’s not because the Linux environment you get with termux wouldn’t work; it’s just that he wanted something native. To that end, he bought a somewhat worse-for-wear Xiaomi Mi A1 from eBay to get hardware Alpine-based postmarket could use.

Software wise, it was just a matter of following instructions and reading manuals — Linux is Linux, after all. The firewall proved to be his main challenge, though trying to branch out from Home Assistant to run Minecraft Server did run into Java issues [Hardware Haven] had no interest in troubleshooting. Hardware wise, though, well — do you want to leave a phone plugged in permanently? Smokey the Bear suggests you not, especially if you live near a forest. Besides, you probably don’t want your server on WiFi, and at least this smartphone wouldn’t charge when using a networking dongle.

That meant phone surgery: the battery came out, and 5 V from an old USB charger was piped into the battery charge controller via a diode. The diode was used for its voltage drop, to bring the 5 V supply down to a believable battery voltage — a buck converter might have been better, but you use what you have, and the diode drop doesn’t dissipate much power. Power dissipation is still one watt at idle, six during a stress test.

Given how cheap the phone was, and how little power this thing sips, [Hardware Heaven] has an excellent answer to those who say homelabbing is a rich person’s hobby. This project also reminds us that while our phones might not be as hackable as we’d like, they’re still far from totally locked down. You can even run NixOS on (some of) them.

Continue reading “From Smartphone To A Home Server”

Hackaday Links Column Banner

Hackaday Links: July 20, 2025

In the relatively short time that the James Webb Space Telescope has been operational, there’s seemingly no end to its list of accomplishments. And if you’re like us, you were sure that Webb had already achieved the first direct imaging of a planet orbiting a star other than our own a long time ago. But as it turns out, Webb has only recently knocked that item off its bucket list, with the direct visualization of a Saturn-like planet orbiting a nearby star known somewhat antiseptically as TWA 7, about 111 light-years away in the constellation Antlia. The star has a significant disk of debris orbiting around it, and using the coronagraph on Webb’s MIRI instrument, astronomers were able to blot out the glare of the star and collect data from just the dust. This revealed a faint infrared source near the star that appeared to be clearing a path through the dust.

Continue reading “Hackaday Links: July 20, 2025”

SPACEdeck Is Half Cyberdeck, Half Phone Case, All Style

It’s been at least a few hours since Hackaday last featured a cyberdeck, so to avoid the specter of withdrawal, we present you with [Sp4m]’s SPACEdeck, a stylish phone-based cyberdeck!

The case features a great message in an even better font.The SPACEdeck takes a Samsung Galaxy S24 and puts it into a handsome clamshell case with a wireless keyboard, turning the phone into a tiny-screened laptop that urges you not to panic. Is The Hitchiker’s Guide to The Galaxy available on the Playstore? Well, the e-book of the novel surely is, and having access to Wikipedia comes close. The design is building off (or out from, as the case may be) a 3D-printed phone case for the S24 by Digital Proto.

Given that the Galaxy S24 has more horsepower than the ancient Macbook we’re writing this on, this setup is probably going to be more useful than you might think, especially when paired with Termux to give you the full power of Linux.

Like some modern laptops, the screen can rotate 180 degrees for when the keyboard isn’t needed. The case will also allow for Nintendo Switch2 joycon integration, but that’s a work in progress for now. The connection points will also be modular so other accessories can be used. All files will be released once [Sp4m] is happy with how the Joycons are holding on, hopefully with a license that will allow us to remix this for other phones.

Given the supercomputers in our pockets, it’s really a wonder we don’t see more android-based cyberdecks, but most seem to stick to SBCs. Lately it seems the slabtop form-factor has been equally popular for cyberdecks, but it’s hard to beat a clamshell for practicality.

2025 Pet Hacks Contest: Feline Facial Recognition Foils Food Filching

Cats are no respecters of personal property, as [Joe Mattioni] learned when one of his cats, [Layla] needed a special prescription diet. Kitty didn’t care for it, and since the other cat, [Foxy]’s bowl was right there– well, you see where this is going. To keep [Layla] out of [Foxy]’s food and on the vet-approved diet, [Joe] built an automatic feeding system with feline facial recognition. As you do.

The hardware consists of a heavily modified feed bowl with a motorized lid that was originally operated by motion-detection, an old Android phone running a customized TensorFlow Lite model, and hardware to bridge them together. Bowl hardware has yet to be documented on [Joe]’s project page, aside from the hint that an Arduino (what else?) was involved, but the write up on feline facial recognition is fascinating.

See, when [Joe] started the project, there were no cat-identifying models available– but there were lots of human facial recognition models. Since humans and cats both have faces, [Joe] decided to use the MobileFaceNet model as a starting point, and just add extra training data in the form of 5000 furry feline faces. That ran into the hurdle that you can’t train a TFLite model, which MobileFaceNet is, so [Joe] reconstructed it as a Keras model using Google CoLab. Only then could the training occur, after which the modified model was translated back to TFLite for deployment on the Android phone as part of a bowl-controller app he wrote.

No one, [Joe] included, would say that this is the easiest, fastest, or possibly even most reliable solution– a cat smart enough not to show their face might sneak in after the authorized feline has their fill, taking advantage of a safety that won’t close a bowl on a kitty’s head, for example–but that’s what undeniably makes this a hack. It sounds like [Joe] had a great learning adventure putting this together, and the fact that it kept kitty on the proper diet is really just bonus.

Want to go on a learning adventure of your own? Click this finely-crafted link for all the details about this ongoing contest.

 

An Open-Source Wii U Gamepad

Although Nintendo is mostly famous for making great games, they also have an infamous reputation for being highly litigious not only for reasonable qualms like outright piracy of their games, but additionally for more gray areas like homebrew development on their platforms or posting gameplay videos online. With that sort of reputation it’s not surprising that they don’t release open-source drivers for their platforms, especially those like the Wii U with unique controllers that are difficult to emulate. This Wii U gamepad emulator seeks to bridge that gap.

The major issue with the Wii U compared to other Nintendo platforms like the SNES or GameCube is that the controller looks like a standalone console and behaves similarly as well, with its own built-in screen. Buying replacement controllers for this unusual device isn’t straightforward either; outside of Japan Nintendo did not offer an easy path for consumers to buy controllers. This software suite, called Vanilla, aims to allow other non-Nintendo hardware to bridge this gap, bringing in support for things like the Steam Deck, the Nintendo Switch, various Linux devices, or Android smartphones which all have the touch screens required for Wii U controllers. The only other hardware requirement is that the device must support 802.11n 5 GHz Wi-Fi.

Although the Wii U was somewhat of a flop commercially, it seems to be experiencing a bit of a resurgence among collectors, retro gaming enthusiasts, and homebrew gaming developers as well. Many games were incredibly well made and are still experiencing continued life on the Switch, and plenty of gamers are looking for the original experience on the Wii U instead. If you’ve somehow found yourself in the opposite position of owning of a Wii U controller but not the console, though, you can still get all the Wii U functionality back with this console modification.

Thanks to [Kat] for the tip!

Using A Smartphone As A Touchscreen For Arduino

If you want a good display and interface device for an embedded project, it’s hard to look past an old smartphone. After all, you’ve got an excellent quality screen and capacitive touch interface all in the same package! [Doctor Volt] explains how to easily set up your old smartphone to work as a touchscreen for your Arduino.

[Doctor Volt] demonstrates the idea with a 2018 Samsung Galaxy A8, though a wide variety of Android phones can be put to use in this way. The phone is connected to the Arduino via a USB-to-serial converter and an OTG cable. Using a USB-C phone with Power Delivery is ideal here, as it allows the phone to be powered while also communicating with the Arduino over USB.

The RemoteXY app is built specifically for this purpose. It can be installed on an Android phone to allow it to communicate effectively with Arduino devices, which run the RemoteXY library in turn. Configuring the app is relatively straightforward, with a point-and-click wizard helping you designate what hardware you’re using and how you’ve got it hooked up. [Doctor Volt] does a great job of explaining how to hook everything up, and how to build some simple graphical interfaces.

There are a ton of display and interface options in the embedded space these days, many of which can be had cheaply off the shelf. Still, few compete with the resolution and quality of even older smartphones. It’s a neat project that could come in very handy for your next embedded build! Video after the break.

Continue reading “Using A Smartphone As A Touchscreen For Arduino”