a) Schematic illustration of energy storage process of succulent plants by harnessing solar energy with a solar cell, and the solar cell converts the energy into electricity that can be store in APCSCs of succulent plants, and then utilized by multiple electrical appliances. b–d) The energy is stored in cactus under sunlight by solar cell and then power light strips of Christmas tree for decoration.

Succulents Into Supercapacitors

Researchers in Beijing have discovered a way to turn succulents into supercapacitors to help store energy. While previous research has found ways to store energy in plants, it often required implants or other modifications to the plant itself to function. These foreign components might be rejected by the plant or hamper its natural functions leading to its premature death.

This new method takes an aloe leaf, freeze dries it, heats it up, then uses the resulting components as an implant back into the aloe plant. Since it’s all aloe all the time, the plant stays happy (or at least alive) and becomes an electrolytic supercapacitor.

Using the natural electrolytes of the aloe juice, the supercapacitor can then be charged and discharged as needed. The researchers tested the concept by solar charging the capacitor and then using that to run LED lights.

This certainly proposes some interesting applications, although we think your HOA might not be a fan. We also wonder if there might be a way to use the photosynthetic process more directly to charge the plant? Maybe this could recharge a tiny robot that lands on the plants?

The Sounds Emitted By Plants Are Real But They Are Still Not Talking

A recent paper published by researchers at the university of Tel Aviv in Cell on the sounds they captured from ‘stressed’ plants had parts of the internet abuzz with what this meant, with some suggesting that this was an early April Fools prank. The fun part here is the news item is not that plants make noise, but rather that this was the first time (apparently) that the noise made by plants was captured by microphones placed at some distance from a variety of plants.

This research is based on previous studies dating back decades, such as Tyree and Sperry who reported (PDF) in 1989 on the vulnerability of the plant xylem (water transporting tissue) to cavitation and embolism. Since the xylem’s function is to carry water and dissolved nutrients to the upper parts of the plant, having air bubbles form would be a negative thing for the plant’s survival. When and how cavitation occurs in the xylem is relevant as it directly impacts how well plants grow. Continue reading “The Sounds Emitted By Plants Are Real But They Are Still Not Talking”

OpenDendrometer Can Measure How Your Tree Feels

There are various ways to measure plant health, and we’ve seen many projects creating open-source solutions. One we haven’t seen is a dendrometer, which involves measuring various physical dimensions of trees to track their health and growth. [John Opsahl] is changing this with the OpenDendrometer, a tool for tracking the diameter of tree limbs and fruit.

Tiny changes in diameter take place throughout the day, and tracking these changes allows deviations to be detected, which can be a sign of water stress. Over weeks and months, these measurements can be used to measure growth and fruits’ progress to harvest. [John] found that a digital tire tread depth gauge can work well for this application. Many of these gauges use the same electronics as the cheap digital calipers, for which the serial protocol was reverse engineered more than a decade ago. The OpenDendrometer connects the tire depth gauge to a microcontroller via a 1.5V level shifter, which logs measurements to an SD card while using a DS3231 RTC for accurate timestamps. The RTC can also be used to wake up the circuit at the required intervals to save battery power. For the initial proof of concept [John] is using an Arduino Pro Mini, but plans to move to an ESP32 at a later stage to allow wireless data transmission.

Everything will be housed in a 3D printed enclosure with a foam cord gasket to make the device weather resistant. A mounting rod on the outside of the enclosure with adjustable thumbscrews allows the OpenDendrometer to be attached to any part of the tree. We plan to keep an eye on this project and look forward to seeing the data it produces.

For the other ways of measuring plant health, we’ve covered everything from soil moisture to Normalized Difference Vegetation Index and even plant weight and even pot plant weight.

How To Grow (Almost) Anything

An off-shoot of the infamous “How to Make (Almost) Anything” course at the Massachusetts Institute of Technology, “How to Grow (Almost) Anything” tackles the core concepts behind designing with biology – prototyping biomolecules, engineering biological computers, and 3D printing biomaterials. The material touches elements of synthetic biology, ethics of biotechnology, protein design, microfluidic fabrication, microbiome sequencing, CRISPR, and gene cloning.

In a similar fashion to the original HTMAA course, HTGAA works by introducing a new concept each week that builds up to a final project. Students learn about designing DNA experiments, using synthesized oligonucleotide primers to amplify a PCR product, testing the impact of genes on the production of lycopene in E coli., protein analysis and folding, isolating a microbiome colony from human skin and confining bacteria to image, printing 3D structures that contain living engineered bacteria, and using expansion microscopy (ExM) to visualize a mouse brain slice. The final projects run the gamut from creating a biocomputer in a cream to isolating yeast from bees.

Growing out from an initiative to create large communities around biotechnology research, the course requires minimal prior exposure to biology. By working directly with hands-on applications to biodesign concepts, students are able to direct apply their knowledge of theoretical biology concepts to real-world applications, making it an ideal springboard for bio-inspired DIY projects. Even though the syllabus isn’t fully available online, there’s a treasure trove of past projects to browse through for your next big inspiration.

Long-Range RFID Leaflets

Pick a card, any card. [Andrew Quitmeyer] and [Madeline Schwartzman] make sure that any card you pick will match their NYC art installation. “Replantment” is an interactive art installation which invites guests to view full-size leaf molds casts from around the world.

A receipt file with leaf images is kept out of range in this art installation. When a viewer selects one, and carries it to the viewing area, an RFID reader tells an Arduino which tag has been detected. Solid-state relays control two recycled clothing conveyors draped with clear curtains. The simple units used to be back-and-forth control but through dead-reckoning, they can present any leaf mold cast front-and-center.

Clothing conveyors from the last century weren’t this smart before, and it begs the question about inventory automation in small businesses or businesses with limited space.

We haven’t seen much long-range RFID, probably because of cost. Ordinary tags have been read at a distance with this portable reader though, and NFC has been transmitted across a room, sort of.

Continue reading “Long-Range RFID Leaflets”