A Close Look At The Mitxela Precision Clock Mk IV

Over on his secondary YouTube channel, [Jeff Geerling] recently demoed the new Mitxela Precision Clock Mk IV.

This clock uses GPS to get the current time, but also your location so it can figure out what time zone you’re in and which daylight savings time might apply. On the back a blinking diode announces the arrival of each second. A temperature-compensated crystal oscillator (TCXO) is employed for accurate time-keeping.

The clock can be folded in half, thereby doubling as a clapperboard for movie makers. The dimming system is analog, not pulse width modulation (PWM), which means no visible flashing artifacts when recording. It is highly configurable and has USB connectivity. And it has not one but two ARM microcontrollers, an ARM STM32L476, and an ARM STM32L010. If you’re interested, you can pick one up for yourself from [Mitxela]’s shop.

Toward the end of his video [Jeff] does some navel gazing, thinking about what might be required if future versions of the clock wanted to get down into precision at the nanosecond level. Do you arrange it so the light arrives at the viewer’s eyeball at the right time? Or do you update it on the clock at the right time and let the viewer know about it after a minuscule delay? Philosophical preponderances for another day!

We should add that we’ve seen plenty of cool stuff from [Mitxela] before, including the Euroknob and these soldering tweezers.

Continue reading “A Close Look At The Mitxela Precision Clock Mk IV”

A woman in a richly-colored blue head scarf leans over a wooden table looking at the timer between her hands. The timer has a yellow circle on black flip panels on the left and black and white CT scans of a human torso on the right side. The frame is wood, and there is an electric motor on the upper right of the frame and a silver drum on the left of the frame beneath the woman's hand.

A Flip Clock Becomes A Flip Timer

Sometimes it’s nice to have a widget to do a single task and avoid getting distracted by the supposed simplicity of doing it with an app on a smartphone. [Dina Amin] built a timer from an old flip clock to stay focused.

Starting with a disassembly of the flip clocks she found at a flea market with [Simone Giertz], [Amin] decided to change the twenty four hour mechanism to a twenty four minute one which was similar to the amount of time she was already using for several different practices. Since she’s an expert in animation, she planned on turning a set of CT scans into the animation that would play on the section that had previously been the minutes of the clock.

As much of the original clock’s components were damaged, and [Amin] didn’t have a chance to learn clockmaking from scratch in a week, she tried a few different drive mechanisms for the build. The drum from an air fryer timer driven with an electric motor fit the bill, but off enough from proper minutes that [Amin] switched from numerals to a yellow circle that fills in as it approaches the satisfying ding of completion.

If you want to see Simone’s Moon flip clock we’ve covered that project too.

Continue reading “A Flip Clock Becomes A Flip Timer”

A woman in a ball cap and black tank top holds a black and white image of the Moon printed on black acrylic. It can fold and is mounted on a black plastic mechanism with turning knobs affixed to the ends. There are out-of-focus shelves in the background with various items and books on them.

Moon Phase Flip Clock Is Fantastic

We love clocks, but we especially love unusual timepieces that aren’t just about showing the hour of the day. [Simone Giertz] built a flip clock moon phase tracker for a friend.

While in Egypt for Cairo Maker Faire, [Giertz] and [dina Amin] found some old flip clocks at a flea market and had to have them. [Amin] mentioned wanting to make a moon phase tracker with one, and [Giertz] decided to try her hand at making her own version. A side quest in more comfortable flying is included with the price of admission, but the real focus is the process of figuring out how to replicate the flip clocks original mechanism in a different size and shape.

[Giertz] cut out 30 semi-circle flaps from polystyrene and then affixed vinyl cut-outs to the flaps. The instructions for the assembly suggest that this might not be the best way to do it, and that printing stickers to affix to the flaps might work better since the cut vinyl turned out pretty fiddly. We really like the part where she built a grid jig to determine the optimal placement of the beams to keep the flaps in the right position after a disheartening amount of difficulties doing it in a more manual way. Her approach of letting it rest for twenty minutes before coming back to it is something you might find helpful in your own projects.

Best of all, if you want to build your own, the files are available for the flip moon station on the Yetch website. You’ll have to come up with your own method to drive it though as that isn’t in the files from what we saw.

Continue reading “Moon Phase Flip Clock Is Fantastic”

A Neat E-Paper Digit Clock (or Four)

[sprite_tm] had a problem. He needed a clock for the living room, but didn’t want to just buy something off the shelf. In his own words, “It’s an opportunity for a cool project that I’d rather not let go to waste.” Thus started a project to build a fun e-paper digit clock!

There were several goals for the build from the outset. It had to be battery driven, large enough to be easily readable, and readily visible both during the day and in low-light conditions. It also needed to be low maintenance, and “interesting,” as [sprite_tm] put it. This drove the design towards an e-paper solution. However, large e-paper displays can be a bit pricy. That spawned a creative idea—why not grab four smaller displays and make a clock with separate individual digits instead?

The build description covers the full design, from the ESP32 at the heart of things to odd brownout issues and the old-school Nokia batteries providing the juice. Indeed, [sprite_tm] even went the creative route, making each individual digit of the clock operate largely independently. Each has its own battery, microcontroller, and display. To save battery life, only the hours digit has to spend energy syncing with an NTP time server, and it uses the short-range ESPNow protocol to send time updates to the other digits.

It’s an unconventional clock, to be sure; you could even consider it four clocks in one. Ultimately, though, that’s what we like in a timepiece here at Hackaday. Meanwhile, if you’ve come up with a fun and innovative way to tell time, be sure to let us know on the tipsline!

[Thanks to Maarten Tromp for the tip!]

Back To Reality With The Time Brick

There are a lot of distractions in daily life, especially with all the different forms of technology and their accompanying algorithms vying for our attention in the modern world. [mar1ash] makes the same observation about our shared experiences fighting to stay sane with all these push notifications and alerts, and wanted something a little simpler that can just tell time and perhaps a few other things. Enter the time brick.

The time brick is a simple way of keeping track of the most basic of things in the real world: time and weather. The device has no buttons and only a small OLED display. Based on an ESP-01 module and housed in a LEGO-like enclosure, the USB-powered clock sits quietly by a bed or computer with no need for any user interaction at all. It gets its information over a Wi-Fi connection configured in the code running on the device, and cycles through not only time, date, and weather but also a series of pre-programmed quotes of a surreal nature, since part of [mar1ash]’s goals for this project was to do something just a little bit outside the norm.

There are a few other quirks in this tiny device as well, including animations for the weather display, a “night mode” that’s automatically activated to account for low-light conditions, and the ability to easily handle WiFi drops and other errors without crashing. All of the project’s code is also available on its GitHub page. As far as design goes, it’s an excellent demonstration that successful projects have to avoid feature creep, and that doing one thing well is often a better design philosophy than adding needless complications.

Printed Perpetual Calendar Clock Contains Clever Cams

At Hackaday, it is always clock time, and clock time is a great time to check in with [shiura], whose 3D Printed Perpetual Calendar Clock is now at Version 2. A 3D printed calendar clock, well, no big deal, right? Grab a few steppers, slap in an ESP32 to connect to a time server, and you’re good. That’s where most of us would probably go, but most of us aren’t [shiura], who has some real mechanical chops.

The front face of the perpetual calendar clock.
There’s also a 24-hour dial, because why not?

This clock isn’t all mechanical. It probably could be, but at its core it uses a commercial quartz movement — you know, the cheap ones that take a single double-A battery. The only restriction is that the length of the hour axis must be twelve millimeters or more. Aside from that, a few self-tapping screws and an M8 nut, everything else is fully 3D printed.

From that simple quartz movement, [shiura]’s clock tracks not only the day of the week, the month and date — even in Febuary, and even compensating for leap years. Except for the inevitable drift (and battery changes) you should not have to adjust this clock until March 2100, assuming both you and the 3D printed mechanism live that long. Version one actually did all this, too, but somehow we missed it; version two has some improvements to aesthetics and usability. Take a tour of the mechanism in the video after the break.

We’ve featured several of [shiura]’s innovative clocks before, from a hybrid mechanical-analog display, to a splitless flip-clock, and a fully analog hollow face clock. Of course [shiura] is hardly our only clock-making contributor, because it it always clock time at Hackaday. Continue reading “Printed Perpetual Calendar Clock Contains Clever Cams”

ESP32-Powered Clock Brings Aviation Style To Your Desk

There’s something cool about the visual design language used in the aviation world. You probably don’t get much exposure to it if you’re not regularly flying a plane, but there are other ways you can bring it into your life. A great example would be building an aviation-themed clock, like this stylish timepiece from [oliverb.]

The electronic heart of the build is an ESP32. This wireless-capable microcontroller is a popular choice for clock builds these days. This is because it can contact network time servers out of the box, which allows you to build an incredibly capable and accurate clock without any additional parts. No real-time-clock needed—just have the ESP32 buzz the Internet for an accurate update on the regular!

As for the display itself, three gauges show hours, minutes, and seconds on aviation-like gauges. They’re 3D-printed, which means you can build them from scratch. That’s a touch easier than having to go out and source actual surplus aviation hardware. Each gauge is driven by a NEMA17 stepper motor. There’s also an ATMEGA328 on hand to drive a 7-segment gauge on the seconds display, and a PIR sensor which shuts the clock down when nobody is around to view it.

It’s a tidy build, and one with a compelling aesthetic at that. We’ve seen some similar builds before using real aviation gauges, too. Video after the break.

Continue reading “ESP32-Powered Clock Brings Aviation Style To Your Desk”