This Commodore 16 Is An NTSC One… No, Wait, It’s A PAL One!

We’re used to our computers being powerful enough in both peripheral and processing terms to be almost infinitely configurable under the control of software, but there was a time when that was not the case. The 8-bit generation of home computers were working towards the limits of their capability just to place an image on a TV screen, and every component would have been set up to do just the job it was intended for. Thus when different countries had different TV standards such as the mostly-European PAL and the mostly-American NTSC, there would have been different models of the same machine for each market. The Commodore 16 was just such a machine, and [Adrian Black] has modified his NTSC model with a custom ROM, an Arduino and an Si5351 clock generator to be switchable between the two.

The differences between a PAL and NTSC C16 are two-fold. The clock for the video chip is of a different frequency, and the ROM contents differ too. [Adrian]’s machine therefore has a larger ROM containing both versions which are switchable via one of the upper address lines. A couple of tracks cut in the crystal oscillator circuit allow him to inject a new clock from the Si5351 module, and and Arduino controls everything. The appropriate ROM and clock are selected via a very simple interface, the reset button is captured and while a short press still resets the computer a long one switches the mode.

Despite having its principal engineer, [Bil Herd] as a colleague here at Hackaday, it’s sad that we don’t see as many Commodore 16s as we should. A recent feature showed a 64k C16, but didn’t make it into a C64.

Continue reading “This Commodore 16 Is An NTSC One… No, Wait, It’s A PAL One!”

Make Your Commodore 16 64k, But Not A Commodore 64

The Commodore 16 was a budget home computer from the mid 1980s, the entry-level model in a wider range of machines. As its name suggests it only has 16k of memory in keeping with its budget status, and while it has the rest of the hardware necessary to run software intended for its 64k stablemates, that 16k is impossible to expand without modifying the machine. Should you have a ’16 in your collection this is not a particularly arduous process, and Tynemouth Software have gone into great detail over how it can be achieved.

As was quite common in machines of the period, the address lines for the RAM area above the fitted 16k are not wired to disable it when those addresses are selected, so the same 16k appears mirrored three times in the space between it and the 64k limit. Thus simply plugging in a 64k cartridge would result in the top 48k being unusable, and some means of disabling or supplanting the internal chips was called for. Contemporary upgrades required pin or track snipping, but as they go on to show us there are some less ugly alternatives both permanent and reversible. Whichever you might favor they all at least don’t carry the huge cost hurdle in 2019 that they might have been when the machine was new. Sadly even though their cases may be similar the resulting machine will not be a Commodore 64, not even a new one.

Long-time Hackaday readers will know that the hardware designer for these machines was our Hackaday colleague [Bil Herd], and all followers of Commodore and his work should read his account of the CES trade show at the heady height of Commodore’s  fame.

Commodore C16 Resurrection With A Raspberry Pi

[lactobacillusprime] had a non-working Commodore C16 and too many Raspberry Pi computers, so he decided to bring the C16 back to life by emulating it on the Pi. At the heart of the project is the Pi, along with a small board that converts the old style Commodore keyboards (and joysticks) to a USB port.

Once you have the keyboard as a USB port, the rest of the project is more or less mechanics and software. [lactobacillusprime] did a nice job of getting everything in the new case, along with all the I/O wires routed through the existing ports. For software, Emulation Station does the job of launching the Commodore emulation on the Pi.

Of course, there’s no reason to limit yourself to just the Commodore emulator. Emulation Station along with the right back end emulators will allow this machine to play games that no real Commodore C16 could.

Of course, we were happiest to see him boot up Commodore 64 BASIC. Perhaps we should complete all those half finished C64 BASIC projects we started back in the 1980’s. In general, we hate to see old computers gutted instead of repaired, but at least this one will continue running its software. If you are upset about seeing a machine gutted,  you can always switch over to our previous coverage of putting Commodore guts in a new box.

Continue reading “Commodore C16 Resurrection With A Raspberry Pi”

Hackaday Links: August 17, 2014

hackaday-links-chain

[wjlafrance] recently picked up an old NeXTstation, complete with keyboard, mouse, display… and no display cable. The NeXT boxes had one of the weirder D-sub connectors a still weird DB-19 video connector, meaning [wjla] would have to roll his own. It’s basically just modifying a pair of DB-25 connectors with a dremel, but it works. Here’s the flickr set.

The guys at Flite Test put on a their first annual Flite Fest last month – an RC fly-in in the middle of Ohio – and they’re finally getting around to putting up the recap videos. +1 for using wacky waving inflatable arm flailing tube men as an obstacle course.

My phone’s battery is dead and my water pressure is too high.

Stripboard drawing paper, written in [; \LaTeX ;].

Remember the Commodore 16? [Dave] stuck a PicoITX mother board in one. He used the Keyrah interface to get the original keyboard working with USB. While we’re not too keen on sacrificing old computers to build a PC, it is a C16 (sorry [Bil]), and the end result is very, very clean.

A Chromecast picture frame. [philenotfound] had a 17″ LCD panel from an old Powerbook, and with a $30 LVDS to HDMI adapter, he made a pretty classy Chromecast picture frame.