Hackaday Links Column Banner

Hackaday Links: August 29, 2021

If you thought that COVID-19 couldn’t possibly impact space travel, think again. The ongoing pandemic is having unexpected consequences for companies like SpaceX, who are worried about liquid oxygen shortages due to increased demand for medical oxygen. Massive amounts of liquid oxygen are used as the oxidizer for each rocket launch, of course, as well as in hospitals, which have giant tanks of liquid oxygen somewhere on site. Whether destined for space or for patient care, liquid oxygen comes from cryogenic separation plants, and SpaceX fears that they would have to delay or even cancel launches if manufacturers can’t keep up with demand and have to prioritize their healthcare customers. We’re actually not sure if this is a concern, though, since there are usually separate supply chains for medical and industrial gasses. Then again, we’d suspect a rocket engine might prefer to breathe ultra-pure LOX too.

Speaking of space, if you want to be an astronaut, perhaps the first skill you need to develop is patience. Not only might your ride not be ready to go when you are, but at least in the EU, you’ve got a long line of applicants in front of you. The European Space Agency announced this week that they’re working through a backlog of 23,000 applications for astronaut positions. About 20% of those will apparently be dropped in the pre-screening process, but the rest will (eventually) get an invitation to a full-day test at one of the ESA’s facilities. We imagine the attrition rate from there increases dramatically; either that or the ESA intends to hire a lot of astronauts.

Back here on Earth, Google this week did what it seems to do a lot of, and killed off one of its popular apps. This time the victim is the Android Auto phone app, although we have to admit the whole thing is confusing. The app allows you to connect your phone to the infotainment system in a compatible late-model car, letting you access all your apps without having to fiddle with your phone while driving. But Google also had an app that offered the same experience directly on the phone, for cars without a compatible display. As far as we can tell, the on-phone app is the only thing that’s going away in Android 12; the app for in-car displays will continue to be supported. Former users of the phone-only app are being encouraged to migrate to Google Assistant’s Driving Mode. Or, you know, you could just drive the car instead.

So your brand-new video card is running hot, and you can’t figure out why. At your wit’s end, you crack open the card’s cover and find the reason — a somewhat suspicious-looking foreign object. That’s what happened to Antony ter Horst and his Nvidia RTX 3090, which had a finger cot wedged inside it. It would appear to have slipped off the finger of some assembly worker, and it was clearly interfering with heat flow inside the card. Antony posted the pictures on reddit, which of course found much humor in the finger cot’s resemblance to another latex object. For our part, it put us in mind of some other stories of foreign objects found in common products — there’s a reason why we always check a loaf of bread before using it.

And finally, in a lot of ways YouTube has become the new “vast wasteland” of useless content. But like television before it, there are occasional gems to be found, especially to those of us who love to learn a little something as we watch. And so when we stumbled upon a video with the title “Hot Tap and Stopple Bypass at Smoky Lake” we had to check it out just to find out what each of those words meant. It turned out to be a great video on pipeline construction methods. The “hot tap” refers to cutting into the pipeline, containing high-pressure diluted bitumen from the shale oil fields near Smoky Lake, Alberta, without interrupting the flow of product. The “stopple” is a device that can be threaded into the pipe to permanently seal it, diverting the flow to a newly installed bypass. The whole process is fascinating, so we thought we’d share. Enjoy.

Continue reading “Hackaday Links: August 29, 2021”

SYPHCOM, the compact CO2 sensor

Compact Sensor Keeps You Safe By Watching CO2 Levels

Remember when work meetings were just a bunch of people filling up a small, poorly ventilated room with their exhaled breath? Back in the good old days, all you had to worry about was being lulled to sleep by a combination of the endless slide deck and the accumulation of carbon dioxide. Now? Well, the stakes may just be a little bit higher.

In either situation, knowing the CO2 level in a room could be a handy data point, which is where a portable CO2 sensor like this one could be useful. Or at least that’s [KaRMaN]’s justification for SYPHCOM, the “simple yet powerful handheld carbon dioxide meter.” The guts of the sensor are pretty much what you’d expect — an Arduino Pro Micro, a SenseAir S8 CO2 sensor board, and the necessary battery and charging circuits. But the build does break the mold in a couple of interesting places. One is in the choice of display — a 1980s-era LED matrix display. The HDSP2000 looks like it belongs in a nice bench meter, and is surprisingly legible without a filter. It looks like it flickers a bit in the video below, but chances are that’s just a camera artifact.

The other nice part of this build is the obvious care [KaRMaN] put into making it as small as possible. The layout of boards and components is very clever, making this a solid, compact package, even without an enclosure. We’ve seen CO2 sensors with more features, but for a quick check on air quality, SYPHCOM looks like a great tool.

Continue reading “Compact Sensor Keeps You Safe By Watching CO2 Levels”

mRNA badge next to an image of the actual Moderna vaccine nanoparticle.

Celebrate MRNA Vaccine With This Badge That Blinks The Nucleotide Code

To celebrate getting his second vaccine dose [Paul Klinger] combined two of our favorite things — blinking lights and wearable tech — to create an awesome mRNA vaccine badge.

The badge, which is designed to be worn like a pendant, will slowly blink through all 4,000 nucleotides of the Moderna vaccine over the course of 10 minutes. Watch the video after the break to see it in action. Don’t worry if you got the Pfizer vaccine, you can use the interface button on the back of the badge to change over to Pfizer’s mRNA sequence instead. There’s even a handy legend on the badge, identifying the lipids in case your microbiology skills are a bit rusty.

On the reverse side of the board, you will find a handful of current limiting resistors, a CR2032 battery holder, and the ATtiny1617 microcontroller that runs everything. To assist in converting the mRNA sequence into LED pulses, [Paul] wrote a Python script that will automatically import the nucleotide string from the standard .fasta file and store each nucleotide in just 2 bits, allowing the entire sequence to fit in the program memory of the microcontroller.

This isn’t [Paul’s] first RNA-related project; he originally developed the aforementioned Python script to compress the entirety of the COVID-19 sequence, containing over 30,000 nucleotides, into program memory for his Virus Blinky project, that we featured last year.

Continue reading “Celebrate MRNA Vaccine With This Badge That Blinks The Nucleotide Code”

Cobbled together proof-of-concept vaccination verification system, showing a dot-matrix receipt printer, a webcam for QR code scanning, and an old laptop running the software

Manitoban Makes Open Software Demo Of Proprietary Vaccine Verification Systems

[Mark Jenkins] wasn’t impressed with the Covid 19 vaccination verification systems that restaurants in Manitoba are required to use. Patrons must present a QR code, which must be verified by a mobile app available only from Apple or Google. With help from his local hackerspace, he came up with a bash script solution requiring only kilobytes vs the 50 MB of the mobile apps. [Mark] isn’t pleased with the exclusivity of the apps availability and the lack of an open API. His concern isn’t entirely theoretical, either — Google mysteriously pulled their app from the Play Store for over a week.

The interim result, shown in the video below, is a demonstration system called Alexandra. It consists of a receipt printer, a webcam being used as a QR scanner, and a 2005-era laptop running the script. This is merely a proof of concept, as [Mark] clearly notes. There is still some work to be done — for example, the method used to authenticate with the Google server is transient. But eventually [Mark] hopes to have a free software alternative soon, suitable for restaurant owners to use in their establishments.

What kinds of vaccination verifications systems, if any, are used in your part of the world? Is the system open or proprietary? Let us know in the comments below.

Continue reading “Manitoban Makes Open Software Demo Of Proprietary Vaccine Verification Systems”

Smartphone App For Leftover Vaccinations

South Korea’s Disease Control and Prevention Agency launched a pilot program yesterday to minimize vaccination waste using a nationwide smartphone app. People who are over 30 years of age can search for leftover doses on their smartphones. If any are available, they can book an appointment immediately within the app, and then get to the medical center within hours to receive the injection. One can tag up to five nearby inoculation centers to receive an instant message when a dose becomes available.

These leftover doses arise from people who have missed their appointment, but also just as you would expect when considering the short shelf life of the opened vaccine, the number of doses per vial, and modulo arithmetic. Within hours of the program rolling out, people began complaining about server problems and the lack of available doses. But this is a pilot program, after all, so some glitches are to be expected.

The full program is supposed to begin on June 9th, although it isn’t clear how it will be different from the pilot project, other than presumably having fewer bugs. The lead picture above shows the availability of leftover vaccines in central Seoul this morning — zero (the symbol 없음 means “none”). But the system does indeed work and people received vaccinations yesterday utilizing this program.

Technically speaking, this isn’t a new app, but rather, it is integrated into the two most popular South Korean portal sites. Anyone already using KakaoTalk or the Naver portal on their smartphone can use this leftover vaccination service with just the press of a few icons. Are the health authorities in your region utilizing smartphone apps or online reservations sites to distribute these leftover doses, doses that would otherwise be discarded? Let us know in the comments below.

Continue reading “Smartphone App For Leftover Vaccinations”

Open-Source Oxygen Hack Chat

Join us on Wednesday, May 5 at noon Pacific for the Open-Source Oxygen Hack Chat with Maher Daoudi and the OxiKit Team!

In such tumultuous times, it may be hard to remember last week, let alone last year. But if you dig back a bit, you may recall what a panic the world was in at this point in 2020 about the ventilator crisis. With COVID-19 cases on the rise and the potential for great numbers of patients needing intensive care, everyone and their brother was hacking together makeshift ventilators, in the well-intentioned belief that their inventions would help relieve the coming shortage of these lifesaving medical mechanical miracles.

As it came to pass, though, more COVID-19 patients have benefited from high-flow oxygen therapy than from mechanical ventilation. That’s great news in places where medical oxygen is cheap and easily available, but that’s always the case. We’ve seen recent reports of hospitals in India running out of oxygen, and even rural and remote areas of the developed world can find themselves caught without enough of the vital gas.

To meet the world’s increasing demand for high-flow oxygen therapy, the team at OxiKit has developed an open-source oxygen concentrator that can be built for far less than what commercial concentrators cost. By filtering the nitrogen out of the air, the concentrator provides oxygen at 90% or higher purity, at a flow of up to 25 liters per minute.

Oxikit founder Maher Daoudi and some of the technical team will join us for this Hack Chat to discuss the details of making oxygen concentrators. We’ll learn about how they work, what the design process for their current concentrator was like, and how they got past the obstacles and delivered on the promise of high-flow oxygen for the masses.

join-hack-chatOur Hack Chats are live community events in the Hackaday.io Hack Chat group messaging. This week we’ll be sitting down on Wednesday, May 5 at 12:00 PM Pacific time. If time zones have you tied up, we have a handy time zone converter.

Click that speech bubble to the right, and you’ll be taken directly to the Hack Chat group on Hackaday.io. You don’t have to wait until Wednesday; join whenever you want and you can see what the community is talking about.
Continue reading “Open-Source Oxygen Hack Chat”

A Simple But Effective High-Flow Oxygen Concentrator From Hardware Store Parts

To say that a lot has happened in the year since the COVID-19 pandemic started is an understatement of epic proportions, so much so that it may be hard to remember how the hardware hacking community responded during those early days, with mass-produced PPE, homebrew ventilators and the like. But we don’t recall seeing too many attempts to build something like this DIY oxygen concentrator during that initial build-out phase.

Given the simplicity and efficacy of the design, dubbed OxiKit, it seems strange that we didn’t see more of these devices. OxiKit uses zeolite, a porous mineral that can be used as a molecular sieve. The tiny beads are packed into columns made from hardware store PVC pipes and fittings and connected to an oil-less air compressor through some solenoid-controlled pneumatic valves. After being cooled in a coil of copper pipe, the compressed air is forced through one zeolite column, which preferentially retains the nitrogen while letting the oxygen pass through. The oxygen stream is split, with part going into a buffer tank and part going into the outlet of the second zeolite column, where it forces the adsorbed nitrogen to be released. An Arduino controls the valves that alternate the gas flow back and forth, resulting in 15 liters per minute of 96% pure oxygen.

OxiKit isn’t optimized as a commercial oxygen concentrator is, so it’s not particularly quiet. But it’s a heck of a lot cheaper than a commercial unit, and an easy build for most hackers. OxiKit’s designs are all open source, but they do sell kits and some of the harder-to-source parts and supplies, like the zeolite. We’d be tempted to build something like this just because the technology is so neat; having a source of high-flow oxygen available isn’t a bad idea, either.