A Simple But Effective High-Flow Oxygen Concentrator From Hardware Store Parts

To say that a lot has happened in the year since the COVID-19 pandemic started is an understatement of epic proportions, so much so that it may be hard to remember how the hardware hacking community responded during those early days, with mass-produced PPE, homebrew ventilators and the like. But we don’t recall seeing too many attempts to build something like this DIY oxygen concentrator during that initial build-out phase.

Given the simplicity and efficacy of the design, dubbed OxiKit, it seems strange that we didn’t see more of these devices. OxiKit uses zeolite, a porous mineral that can be used as a molecular sieve. The tiny beads are packed into columns made from hardware store PVC pipes and fittings and connected to an oil-less air compressor through some solenoid-controlled pneumatic valves. After being cooled in a coil of copper pipe, the compressed air is forced through one zeolite column, which preferentially retains the nitrogen while letting the oxygen pass through. The oxygen stream is split, with part going into a buffer tank and part going into the outlet of the second zeolite column, where it forces the adsorbed nitrogen to be released. An Arduino controls the valves that alternate the gas flow back and forth, resulting in 15 liters per minute of 96% pure oxygen.

OxiKit isn’t optimized as a commercial oxygen concentrator is, so it’s not particularly quiet. But it’s a heck of a lot cheaper than a commercial unit, and an easy build for most hackers. OxiKit’s designs are all open source, but they do sell kits and some of the harder-to-source parts and supplies, like the zeolite. We’d be tempted to build something like this just because the technology is so neat; having a source of high-flow oxygen available isn’t a bad idea, either.

Teardown Of The Singaporean COVID-19 TraceTogether Token

A large part of fighting against the SARS-CoV-2 pandemic is the practice of contact tracing, where the whereabouts of an infected person can be traced and anyone who has been in contact with that person over the past days tested for COVID-19. While smartphone apps have been a popular choice for this kind of tracing, they come with a range of limitations, which is what the TraceTogether hardware token seeks to circumvent. Now [Sean “Xobs” Cross] has taken a look at the hardware that will be inside the token once it launches.

The Simmel COVID-19 contact tracer.

Recently, [Sean] along with [Andrew “bunnie” Huang] and a few others were asked by GovTech Singapore to review their TraceTogether hardware token proposal. At its core it’s similar to the Simmel contact tracing solution – on which both are also working – with contacts stored locally in the device, Bluetooth communication, and a runtime of a few months or longer on the non-rechargeable batteries.

The tracing protocol used is BlueTrace, which is an open application protocol aimed at digital contact tracing. It was developed by the Singaporean government, initially for use with their TraceTogether mobile app.

This smartphone app showed a number of issues. First is that Apple does not allow for iOS apps to use Bluetooth in the background, requiring the app to be active in the foreground to be useful. Apple has its own tracing protocol, but it does not cover the requirements for building a full contact graph, as [Andrew] covers in more detail. Finally, the app in general is not useful to those who do not have a recent (compatible) smartphone, or who do not have a smartphone at all.

A lot of the challenges in developing these devices lie in making them low-power, while still having the Bluetooth transceiver active often enough to be useful, as well as having enough space to store interactions and the temporary tokens that are used in the tracing protocol. As Simmel and the TraceTogether tokens become available over the coming months, it will be interesting to see how well these predictions worked out.

Hackaday Links: May 31, 2020

We begin with sad news indeed as we mark the passing of Marcel van Kervinck on Monday. The name might not ring a bell, but his project, the Gigatron TTL computer, certainly will. We did a deep dive on the microprocessor-less computer a while back, and Marcel was a regular at conferences and on the Gigatron forums, supporting users and extending what the computer can do. He was pretty candid about his health issues, and I’ll add that when I approached him a few weeks ago out of the blue about perhaps doing a Hack Chat about Gigatron, he was brutally honest about how little time he had left and that he wouldn’t make it that long. I was blown away by the grace and courage he displayed. His co-conspirator Walter Belger will carry on the Gigatron mission, including joining us for a Hack Chat on June 24. In the meantime, this might be a great time to pick up a Gigatron kit before they’re all sold out and get busy soldering all those delicious through-hole TTL chips.

May of 2020 is the month that never seems to end, and as the world’s focus seems to shift away from the immediate public health aspects of the ongoing COVID-19 pandemic to the long-term economic impact of the response to it, we happened across a very interesting article on just that topic. Mike Robbins from the Circuit Lab has modeled the economic impact of the pandemic using analog circuit simulations. He models people as charges and the flow of people between diseases states as currents; the model has capacitors to store the charge and allow him to measure voltages and filters that model the time delays needed for public policy changes to be adopted. It’s a fascinating mashup of engineering and policy. You can play with the model online, tweak parameters, and see what you come up with.

One of the things that the above model makes clear is that waiting to fully reopen the economy until a vaccine is ready is a long and dangerous game. But there has at least been some progress on that front, as Massachusetts biotech firm Moderna announced success in Phase 1 clinical trials of its novel mRNA vaccine against SARS-CoV-2. It’s important to temper expectations here; Phase 1 trials are only the beginning of human testing, aimed at determining the highest treatment dose that won’t cause serious side effects. Phase 2 and Phase 3 trials are much more involved, so there’s a long way to go before the vaccine, mRNA-1273, is ready for use. If you need to brush up on how these new vaccines work, check out our handy guide to mRNA vaccines.

In happier news, the “moar memory” version of the Raspberry Pi 4 is now on sale. Eben Upton announced that the 8GB version of the Pi 4 is now available for $75. The upgrade was apparently delayed by the lack of an 8GB LPDDR SDRAM chip in a package that would work in the Pi manufacturing process. They’ve also released a beta of a 64-bit version of the Raspberry Pi OS, if you’re interested in a bleeding-edge flex.

And finally, for those who missed the first wave of the computer revolution and never had a blinkenlight machine, you can at least partially scratch that itch with this Internet-connected Altair 8800. Jesse Downing has written a queueing system that allows users to connect to the machine via ssh and use Microsoft BASIC 5.0 on CP/M. Need to see those glorious front panels lights do their thing? Jesse has kindly set up a live stream for that, with an overlay of the current console output. It’s a great way to relive your misspent youth, or to get a taste of what computing was like when soldering skills were a barrier to entry.

Coronavirus Testing: CRISPR Technology Set To Streamline Viral Testing

If we could run back 2020 to its beginning and get a do-over, chances are pretty good that we’d do a lot of things differently. There’s a ton of blame to go around on COVID-19, but it’s safe to say that one of the biggest failures of this whole episode has been the lack of cheap, quick, accurate testing for SARS-CoV-2, the virus behind the current pandemic. It’s not for lack of information; after all, Chinese scientists published the sequence of the viral genome very early in the pandemic, and researchers the world over did the same for all the information they gleaned from the virus as it rampaged around the planet.

But leveraging that information into usable diagnostics has been anything but a smooth process. Initially, the only method of detecting the virus was with reverse transcriptase-polymerase chain reaction (RT-PCR) tests, a fussy process that requires trained technicians and a well-equipped lab, takes days to weeks to return results, and can only tell if the patient has a current infection. Antibody testing has the potential for a quick and easy, no-lab-required test, but can only be used to see if a patient has had an infection at some time in the past.

What’s needed as the COVID-19 crisis continues is a test with the specificity and sensitivity of PCR combined with the rapidity and simplicity of an antibody test. That’s where a new assay, based on the latest in molecular biology methods and dubbed “STOPCovid” comes in, and it could play a major role in diagnostics now and in the future.

Continue reading “Coronavirus Testing: CRISPR Technology Set To Streamline Viral Testing”

Dr. Anthony Fauci, Infectious Disease Slayer

In the two months since the harsh realities of SARS-CoV-2 and COVID-19 have come into sharp focus, Americans have become increasingly familiar with a man who has been quietly serving the people since the days when Ronald Reagan was up for re-election. For many, Dr. Anthony Fauci is the national voice of reason in a sea of dubious information. He has arguably become the most trustworthy person the government has to offer in the face of this pandemic.

Officially, Dr. Fauci is the Director of the National Institute of Allergy and Infectious Diseases (NIAID), a position he was appointed to in 1984. He has worked under six presidents, advising them on every outbreak from the HIV/AIDS epidemic up through Zika and Ebola. Now, he is part of the White House’s coronavirus task force.

At 79 years old, he still works 18-hour days, sticking it to infectious diseases with one hand, and smoothing the feathers of the American people with the other. Dr. Fauci certainly feels like the right person at the right time. So how did he get to this point?

Continue reading “Dr. Anthony Fauci, Infectious Disease Slayer”

Help Us Throw More Cycles At The Coronavirus Problem

The Hackaday community has answered the call and put their computers put to work folding proteins found in the coronavirus. Team_Hack-a-Day ranks #44 in the world so far this month, and I’ve seen us rank as high as #19 on 24-hour leaderboards.

Want to join the fight? Donate some of those computing cycles you’re not using to battling SARS‑CoV‑2. You’re probably not an epidemiologist or a vaccine researcher, but you can make their jobs easier by providing them with the data they need through the Folding@home Project.

As Dan Maloney explained in his excellent article on protein folding, understanding the incredibly complex folding behavior of the proteins in the virus will be key to finding treatments and possibly a vaccine. Folding@home connects countless computers via the internet and is now the largest supercomputer in the world, consisting of over 3.5 million CPUs and over half a million GPUs. The resulting data is freely available to researchers.

Let’s take a look at how easy it is to get up and running, how a GPU can supercharge a setup, and dip into the stats for Team_Hack-a-Day’s effort.

Continue reading “Help Us Throw More Cycles At The Coronavirus Problem”

Brainstorming COVID-19 Hack Chat

Join us on Wednesday, April 8 at noon Pacific for the Brainstorming COVID-19 Hack Chat!

The COVID-19 pandemic has been sweeping across the globe now for three months. In that time it has encountered little resistance in its advances, being a novel virus with just the right mix of transmissibility and virulence that our human immune systems have never encountered. The virus is racking up win after win across the world, crippling public health and medical systems, shutting down entire economies, and forcing billions of people into isolation for the foreseeable future.

While social distancing is certainly an effective way to limit the spread of the disease, it feels more like hiding than fighting. Bored and stuck at home, millions of fertile minds are looking for an outlet for this frustration, a more affirmative way to fight the good fight and build solutions that the world sorely needs. And thus we’ve seen the outpouring of designs, ideas, and prototypes of everything from social distancing helpers to personal protective equipment (PPE) hacks.

In this Hack Chat, we’ll try to provide a framework around which hackers can start to turn their ideas into COVID-19 solutions. There are a ton of problems right now, but the most acute and most approachable seem to revolve around making sure healthcare providers have the PPE they need to do their job safely. Hacking at the edges of managing social distancing seems doable, too, both in terms of helping people keep a healthy distance from each other and in managing the isolation that causes. And let’s not forget about managing boredom; idle hands lead to idle minds, and staying healthy mentally is just as important as good handwashing and nutrition.

Join us on Wednesday for this group-led Hack Chat and bring your best ideas for attacking COVID-19 head-on.

join-hack-chatOur Hack Chats are live community events in the Hackaday.io Hack Chat group messaging. This week we’ll be sitting down on Wednesday, April 8 at 12:00 PM Pacific time. If time zones have got you down, we have a handy time zone converter.

Click that speech bubble to the right, and you’ll be taken directly to the Hack Chat group on Hackaday.io. You don’t have to wait until Wednesday; join whenever you want and you can see what the community is talking about.

Continue reading “Brainstorming COVID-19 Hack Chat”