Building A Drone That (Almost) Follows You Home

There’s a great deal of research happening around the topic of autonomous vehicles of all creeds and colours. [Ryan] decided this was an interesting field, and took on an autonomous drone as his final project at Cornell University.

The main idea was to create a drone that could autonomously follow a target which provided GPS data for the drone to follow. [Ryan] planned to implement this by having a smartphone provide GPS coordinates to the drone over WiFi, allowing the drone to track the user.

As this was  a university project, he had to take a very carefully considered approach to the build. Given likely constraints on both money and time, he identified that the crux of the project was to develop the autonomous part of the drone, not the drone itself. Thus, off-the-shelf parts were selected to swiftly put together a drone platform that would serve as a test bed for his autonomous brain.

The write up is in-depth and shares all the gritty details of getting the various subsystems of the drone talking together. He also shares issues that were faced with altitude control – without any sensors to determine altitude, it wasn’t possible to keep the drone at a level height. This unfortunately complicated things and meant that he didn’t get to complete the drone’s following algorithm. Such roadblocks are highly common in time-limited university projects, though their educational value cannot be overstated. Overall, while the project may not have met its final goals, it was obviously an excellent learning experience, and one which has taught him plenty about working with drones and the related electronics.

For another take on autonomous flight, check out this high-speed AI racing drone.

The British Drone Law Reaches Parliament

We’ve brought you a variety of stories over the years covering the interface between multirotor fliers and the law, and looked at the credibility gap between some official incident reports and the capabilities of real drones. In the news this week is a proposed new law in front of the British House of Commons that would bring in a licensing scheme for machines weighing over 250 g, as well as new powers to seize drones. We’ve previously told you about the consultation that led up to it, and its original announcement.

As a British voter with some interest in the matter, I decided to write to my Member of Parliament about it, and since my letter says what I would have written to cover the story anyway it stands below in lieu of the normal Hackaday article format. If you are a British multirotor flier this is an issue you need to be aware of, and if you have any concerns you should consider raising them with your MP as well. Continue reading “The British Drone Law Reaches Parliament”

Flame Throwing Drone Is Actually Useful

A team in Xiangyang, China is using a flame-throwing drone to clear debris from high voltage power lines. These lines are made of metal of course, and are impervious to the high heat of the flames. Any type debris that gets on the lines will be charred to a cinder in just a few seconds. This is all is quite a bit safer than sending a human with some type stick up there near the high voltage lines.

Over the years here at Hackaday, we’ve seen people attach some strange things to drones. We can all recall the drone with a real firing pistol. And how about that drone with the huge flamethrower trying to cook a turkey. And let’s not forget the drone that fires bottle rockets.  [Caleb Kraft] did a write-up about hacking the AR drone years ago and mentioned that someone put an Estes-rocket on a drone.  While all of these are incredibly dangerous, ill-advised and for the most part useless, this new power line clearing drone may be the first exception we’ve seen.

What’s the strangest thing you’ve seen someone put on a drone?

Continue reading “Flame Throwing Drone Is Actually Useful”

High-Speed Drones Use AI To Spoil The Fun

Some people look forward to the day when robots have taken over all our jobs and given us an economy where we can while our days away on leisure activities. But if your idea of play is drone racing, you may be out of luck if this AI pilot for high-speed racing drones has anything to say about it.

NASA’s Jet Propulsion Lab has been working for the past two years to develop the algorithms needed to let high-performance UAVs navigate typical drone racing obstacles, and from the look of the tests in the video below, they’ve made a lot of progress. The system is vision based, with the AI drones equipped with wide-field cameras looking both forward and down. The indoor test course has seemingly random floor tiles scattered around, which we guess provide some kind of waypoints for the drones. A previous video details a little about the architecture, and it seems the drones are doing the computer vision on-board, which we find pretty impressive.

Despite the program being bankrolled by Google, we’re sure no evil will come of this, and that we’ll be in no danger of being chased down by swarms of high-speed flying killbots anytime soon. For now we can take solace in the fact that JPL’s algorithms still can’t beat an elite human pilot like [Ken Loo], who bested the bots overall. But alarmingly, the human did no better than the bots on his first lap, which suggests that once the AI gets a little creativity and intuition like that needed to best a Go champion, [Ken] might need to find another line of work.

Continue reading “High-Speed Drones Use AI To Spoil The Fun”

Russian Drone Can Lift 142 Phantom 3 Drones

Russia has long been known for making large machines. They hold the current record for the largest helicopter ever made – the MiL V12. Same goes for the world’s largest airplane, the Antonov An-225. Largest submarine? Yep, they made that too – the Typhoon class. It would appear they’ve thrown their hat in the drone business as well.

While the SKYF drone is made by a private Russian company, it is one of the largest drones we’ve ever seen. Able to lift 400 pounds (a Phantom 3 weighs 2.8 pounds) and can fly for eight hours, the SKYF drone is a nice piece of aeronautical engineering. Quad-copter style drones provide lift by brute force, and are typically plagued with low lift capacities and short flight times. The SKYF triumphs over these limitations by using gasoline powered engines for lift and electric motors for navigation.

It’s still in the prototype stage and being advertised for use in natural disasters and the agriculture industry. Check out the video in the link above to see the SKYF in action.

What’s the largest drone you’ve seen?

Thanks to [Itay] for the tip!

Acetone Smoothing Results In Working Motor

Here’s something only ’90s kids will remember. In 1998, the Air Hogs Sky Shark, a free-flying model airplane powered by compressed air was released. This plane featured foam stabilizers, wings, a molded fuselage that served as a reservoir, and a novel engine powered by compressed air. The complete Sky Shark setup included an air pump. All you had to do was plug the plane into the pump, try to break the pressure gauge, and let the plane fly off into a tree or a neighbor’s rooftop. It’s still a relatively interesting mechanism, and although we’re not going to see compressed air drones anytime soon it’s still a cool toy.

Since [Tom Stanton] is working at the intersection of small-scale aeronautics and 3D printing, he thought he would take a swing at building his own 3D printed air motor. This is an interesting challenge — the engine needs to be air-tight, and it needs to produce some sort of usable power. Is a standard printer up to the task? Somewhat surprisingly, yes.

The design of [Tom]’s motor is more or less the same as what is found in the Air Hogs motor from twenty years ago. A piston is attached to a crank, which is attached to a flywheel, in this case a propeller. Above the cylinder, a ball valve keeps the air from rushing in. A spring is mounted to the top of the piston which pushes the ball out of the way, allowing air into the cylinder. At the bottom of the stroke, the ball closes the valve and air escapes out of the bottom of the cylinder. Simple stuff, really, but can it be printed?

Instead of the usual printer [Tom] uses for his builds, he pulled out an old delta slightly modified for higher quality prints. Really, this is just a 0.2 mm nozzle and a few tweaks to the print settings, but the air motor [Tom] designed came out pretty well and was smoothed to a fine finish with acetone.

After assembling the motor, [Tom] hooked it up to a soda bottle serving as a compressed air reservoir. The motor worked, although it’s doubtful a plane powered with this motor would fly for very long. You can check out [Tom]’s video below.

Continue reading “Acetone Smoothing Results In Working Motor”

3D Printed Hovercraft Takes To The Air

Instructables user [John_Hagy] and some classmates built an RC hovercraft as their final project in the Robotics Education Lab at NC State University. It’s a foam slab with a Hovership H2204X 2300Kv brushless motor inflating a skirt made out of ripstop nylon. Nylon is great here because it has a low friction coefficient and is nonporous to keep the air in. A second motor propels the craft, with a servo turning the whole motor assembly to steer. The team designed and 3D-printed fan holders which also help channel the air to where it’s supposed to go. Control is via a typical radio-control transmitter and receiver combo.

The project writeup includes a lot of fun detail like previous versions of the hovercraft as well as the research they undertook to learn how to configure the craft — clearly it’s their final paper put on the internet, and well done guys.

Needless to say, we at Hackaday can’t get enough of this sort of thing, as evidenced by this cool-looking hovercraft, this hovercraft made on a budget and this solar-powered ‘craft.