Hackaday Podcast Ep004 – Taking The Blue Pill, Abusing Resistors, And Not Finding Drones

Catch up on your Hackaday with this week’s podcast. Mike and Elliot riff on the Bluepill (ST32F103 boards), blackest of black paints, hand-crafted sorting machines, a 3D printer bed leveling system that abuses some 2512 resistors, how cyborgs are going mainstream, and the need for more evidence around airport drone sightings.

Stream or download Episode 4 here, and subscribe to Hackaday on your favorite podcasting platform! You’ll find show notes after the break.

Direct download (43.1 MB)

Places to follow Hackaday podcasts:

Continue reading “Hackaday Podcast Ep004 – Taking The Blue Pill, Abusing Resistors, And Not Finding Drones”

360 Live VR Teleportation Uses Drones, Neural Networks, and Perseverance

This past semester I added research to my already full schedule of math and engineering classes, as any masochistic student eagerly would. Packed schedule aside, how do you pass up the chance to work on implementing 360° virtual teleportation to anywhere in the world, in real-time. Yes, it is indeed the same concept as the cult worshipped Star Trek transporter, minus the ability to physically be at the location. Perhaps we can add a, “beam me up, Scotty” command when shutting down.

The research lab I was working with is the Laboratory for Immersive CommunicatiON (LION). It’s funded by NSF, Microsoft, and Adobe and has been on the pursuit of VR teleportation for some time now.  There’s a lot of cool technologies at work here, like drones which are used as location collection devices. A network of drones will survey landscape anywhere in the world and build the collection assets needed for recreating it in VR. Okay, so a swarm of drones might seem a little intimidating at first, but when has emerging technology not?

Continue reading “360 Live VR Teleportation Uses Drones, Neural Networks, and Perseverance”

There’s Now A New MIDI Spec, And Drones

MIDI, the Musical Instrument Digital Interface, was released in 1983 in a truly bizarre association between musical instrument manufacturers. At no other time, before or since, has there been such cooperation between different manufacturers to define a standard. Since then, the MIDI spec has been expanded with SysEx messages, the ability to dump samples via MIDI, redefining the tuning of instruments via MIDI to support non-Western music, and somewhere deep in the spec, karaoke machines.

Now there’s a new update to the MIDI spec (Gearnews link, here’s the official midi.org announcement but their website requires registration and is a hot garbage fire). At this year’s NAMM, the place where MIDI was first demonstrated decades ago,  the MIDI Manufacturers Association announced an update to MIDI that makes instruments and controllers smarter, and almost self-learning.

There are three new bits to the new update to the MIDI spec. The first is Profile Configuration, a way to auto-configure complex controller mappings, described as, ‘MIDI Learn on steroids’. The second update is Property Exchange, and allows MIDI devices to set device properties like, ‘product name, configuration settings, controller names, and patch data’. This is effectively setting metadata in controllers and devices. The third new bit is Protocol Negotiation, a way to automatically push future, next-gen protocols over a DIN-5 connector.

What does this all mean? Drones. No, I’m serious. The MIDI association is tinkering around with some Tiny Whoops and Phantoms, and posted a video of drones being controlled by a MIDI controller. Play a glissando up, and the drone goes up. You can check out a video of that below.

Continue reading “There’s Now A New MIDI Spec, And Drones”

Watching the Watchers: Are You The Star Of an Encrypted Drone Video Stream?

Small aircraft with streaming video cameras are now widely available, for better or worse. Making eyes in the sky so accessible has resulted in interesting footage that would have been prohibitively expensive to capture a few years ago, but this new creative frontier also has a dark side when used to violate privacy. Those who are covering their tracks by encrypting their video transmission should know researchers at Ben-Gurion University of the Negev demonstrated such protection can be breached.

The BGU team proved that a side-channel analysis can be done against behavior common to video compression algorithms, as certain changes in video input would result in detectable bitrate changes to the output stream. By controlling a target’s visual appearance to trigger these changes, a correlating change in bandwidth consumption would reveal the target’s presence in an encrypted video stream.

Continue reading “Watching the Watchers: Are You The Star Of an Encrypted Drone Video Stream?”

Building A Drone That (Almost) Follows You Home

There’s a great deal of research happening around the topic of autonomous vehicles of all creeds and colours. [Ryan] decided this was an interesting field, and took on an autonomous drone as his final project at Cornell University.

The main idea was to create a drone that could autonomously follow a target which provided GPS data for the drone to follow. [Ryan] planned to implement this by having a smartphone provide GPS coordinates to the drone over WiFi, allowing the drone to track the user.

As this was  a university project, he had to take a very carefully considered approach to the build. Given likely constraints on both money and time, he identified that the crux of the project was to develop the autonomous part of the drone, not the drone itself. Thus, off-the-shelf parts were selected to swiftly put together a drone platform that would serve as a test bed for his autonomous brain.

The write up is in-depth and shares all the gritty details of getting the various subsystems of the drone talking together. He also shares issues that were faced with altitude control – without any sensors to determine altitude, it wasn’t possible to keep the drone at a level height. This unfortunately complicated things and meant that he didn’t get to complete the drone’s following algorithm. Such roadblocks are highly common in time-limited university projects, though their educational value cannot be overstated. Overall, while the project may not have met its final goals, it was obviously an excellent learning experience, and one which has taught him plenty about working with drones and the related electronics.

For another take on autonomous flight, check out this high-speed AI racing drone.

Can Commodity RC Controllers Stay Relevant?

Visualize some radio controlled airplane fanatic of yesteryear, with the requisite giant controller hanging from a strap, neck craned to see the buzzing dot silhouetted against the sky. It’s kind of a stereotype, isn’t it? Those big transmitters were heavy, expensive, and hard to modify, but that was just part of the challenge. Additionally, the form factor has to a degree remained rigid: the box with gimbals — or for the 3-channel controller, the pistol-grip with the big pot that looks like a cheesy race car wheel.

With so much changing in RC capabilities, and the rise of custom electronics across so many different applications, can commodity RC controllers stay relevant? We’re facing an age where the people who invest most heavily in RC equipment are also the ones most likely to want, and know how to work with customization for their rapidly evolving gear. It only makes sense that someone will rise up to satisfy that need.

Continue reading “Can Commodity RC Controllers Stay Relevant?”

Friday Hack Chat: All About Drones

In the future, drones will fill the skies. The world is abuzz (ha!) with news of innovative uses of unmanned aerial vehicles. Soon, our flying robotic overlords will be used for rescue operations, surveillance, counter-insurgency missions, terrorism, agriculture, and delivering frozen dog treats directly from the local Amazon aerodrome to your backyard. The future is nuts.

For this week’s Hack Chat, we’re going to be talking all about unmanned aerial vehicles. This is a huge subject, ranging from aeronautical design, the legal implications of autonomous flying machines, the true efficiency of delivering packages via drones, and the moral ambiguity of covering a city with thousands of mobile, robotic observation posts. In short, the future will be brought to us thanks to powerful brushless motors and lithium batteries.

Our guest for this week’s Hack Chat will be [Piotr Esden-Tempski], developer of UAV autopilot hardware for Paparazzi UAV. Paparazzi can be used for autonomous flight and control of multiple aircraft, and we’ll be talking about the types of embedded systems that can be used for these applications. [Pitor] is also the developer of the 1Bitsy ARM dev platform, the Black Magic Probe JTAG/SWD programmer/debugger and the founder of 1BitSquared.

In this Hack Chat, we’ll be discussing Open Source hardware design for UAVs, all things airborne robotics, the sensors that go into these flying robots, the stalled development (ay, another pun) of consumer and prosumer fixed-wing UAVs, ARM embedded systems, and JTAG and SWD programming and debugging. We’re also taking questions from the audience, and here’s the spreadsheet that will guide the discussion.

Here’s How To Take Part:

join-hack-chatOur Hack Chats are live community events on the Hackaday.io Hack Chat group messaging. This Hack Chat will be going down noon, Pacific time on Friday, September 22nd. Sidereal and solar getting you down? Wondering when noon is this month? Not a problem: here’s a handy countdown timer!

Click that speech bubble to the right, and you’ll be taken directly to the Hack Chat group on Hackaday.io.

You don’t have to wait until Friday; join whenever you want and you can see what the community is talking about.