Compact Cycloidal Drive Lives Inside This Custom Brushless Motor

With the popularity of robot dogs, many people have gotten on the bandwagon and tried building DIY versions. Most of them end up attaching a gearbox to an off-the-shelf brushless motor and call it a day. Not everyone goes that way, though, which is why this internal cycloidal drive actuator caught our eye.

Taking design cues from the MIT Mini Cheetah, [Aaed Musa] approached his actuator from the inside out, literally. His 3D printed cycloidal gearbox is designed to fit inside the stator of a BLDC motor. And not just any BLDC motor, but one built mostly from scratch using a hand-wound — and unwound, and wound again — stator along with a rotor that started as a printed part but was eventually machined from steel. Apart from its fixed ring, the cycloidal drive was mostly 3D printed, with everything fitting nicely inside the stator.

The video below shows the design and assembly process as well as testing of the finished drive. It seems to do really well with speed and positional accuracy, and it delivers a substantial amount of torque. Maybe a little too much, though; testing it with a heavy weight on the end of an arm got the stator coils hot enough to warp the printed parts within. But no matter; this was only a prototype after all. [Aaed] says improvements are in the works, including replacing all the plastic parts with metal ones.

Need a little background on cycloidal drives? They’re pretty cool.

Continue reading “Compact Cycloidal Drive Lives Inside This Custom Brushless Motor”

Variable-Nozzle Ducted Fan Provides Fluid Dynamics Lessons

Any student new to the principles of fluid dynamics will be familiar with Bernoulli’s principle and the Venturi effect, where the speed of a liquid or gas increases when the size of the conduit it flows through decreases. When applying this principle to real-world applications, though, it can get a bit more complex than a student may learn about at first, mostly due to the shortcomings of tangible objects when compared to their textbook ideals. [Mech Ninja] discovered this while developing a ducted fan based around an RC motor.

The ducted fan is meant to be a stand-in for a model jet engine, based around a high-powered motor generally designed for drone racing. Most of the build is 3D printed including duct system, but in order to improve the efficiency and thrust beyond simple ducting, [Mech Ninja] designed and built a variable nozzle to more finely control the “exhaust” of his engine. This system is also 3D printed and can restrict or open up the outflow of the ducted fan, much like a real jet engine would. It uses two servos connected to collars on the outside of the engine. When the servos move the collars, a set of flaps linked to the collars can choke or expand the opening at the rear of the engine.

This is where some of the complexity of real-life designs comes into play, though. After testing the system with a load cell under a few different scenarios, the efficiency and thrust weren’t always better than the original design without the variable nozzle. [Mech Ninja] suspects that this is due to the gaps between the flaps, allowing air to escape and disrupting the efficient laminar flow of the air leaving the fan, and plans to build an improved version in the future. Fluid dynamics can be a fairly complex arena to design within, sometimes going in surprising directions like this ducted fan that turned out better than the theory would have predicted, at least until they accounted for all the variables in the design.

Continue reading “Variable-Nozzle Ducted Fan Provides Fluid Dynamics Lessons”

Single Flex PCB Folds Into A Four-Wheel Rover, Complete With Motors

You’ve got to hand it to [Carl Bugeja] — he comes up with some of the most interesting electromechanical designs we’ve seen. His latest project is right up there, too: a single PCB that folds up into a four-wheel motorized rover.

The key to [Carl]’s design lies with his PCB brushless motors, which he has been refining since we first spotted them back in 2018. The idea is to use traces on the PCB for the stator coils to drive a 3D printed rotor containing tiny magnets. They work surprisingly well, even if they don’t generate a huge amount of torque. [Carl]’s flexible PCB design, which incorporates metal stiffeners, is a bit like an unfolded cardboard box, with two pairs of motor coils on each of the side panels. This leaves the other surfaces available for all the electronics, with includes a PIC, a driver chip, and a Hall sensor for each motor, an IMU and proximity sensor for navigation, and an ESP32 to run the show.

With machined aluminum rotors and TPU tires mounted to the folded-up chassis, it was off to the races, albeit slowly. The lack of torque from the motors and the light weight of the rover, along with some unwanted friction due to ill-fitting joints, added up to slow progress, especially on anything other than a dead flat surface. But with some tweaking, [Carl] was able to get the buggy working well enough to call this one a win. Check out the build and testing in the video below.

Knowing [Carl], this isn’t the last we’ll see of the foldable rover. After all, he stuck with his two-wheel PCB motor design and eventually got that running pretty well. We’ll be keeping an eye out for progress on this one.

Continue reading “Single Flex PCB Folds Into A Four-Wheel Rover, Complete With Motors”

Old Robotic Vacuum Gets A New RC Lease On Life

To our way of thinking, the whole purpose behind robotic vacuum cleaners is their autonomy. They’re not particularly good at vacuuming, but they are persistent about it, and eventually get the job done with as little human intervention as possible. So why in the world would you want to convert a robotic vacuum to radio control?

For [Lucas], the answer was simple: it was a $20 yard sale find, so why not? Plus, he’s got some secret evil plan to repurpose the suckbot for autonomous room mapping, which sounds like a cool project that would benefit from a thorough knowledge of this little fellow’s anatomy and physiology. The bot in question is a Hoover Quest. Like [Lucas] we didn’t know that Hoover made robotic vacuums (Narrator: they probably don’t) but despite generally negative online reviews by users, he found it to be a sturdily built and very modular and repairable unit.

After an initial valiant attempt at reverse engineering the bot’s main board — a project we encourage [Lucas] to return to eventually — he settled for just characterizing the bot’s motors and sensors and building his own controller. The Raspberry Pi Zero he chose may seem like overkill, but he already had it set up to talk to a PS4 game controller, so it made sense — right up until he released the Magic Smoke within it. A backup Pi took the sting out of that, and as the brief video below shows, he was finally able to get the bot under his command.

[Lucas] has more plans for his new little buddy, including integrating the original sensors and adding new ones. Given its intended mission, we’d say a lidar sensor would be a good addition, but that’s just a guess. Whatever he’s got in store for this, we’re keen to hear what happens.

Continue reading “Old Robotic Vacuum Gets A New RC Lease On Life”

Steampunk Brushless Motor Demo Pushes All The Maker Buttons

We’ll be honest right up front: there’s nothing new in [David Cambridge]’s brushless motor and controller build. If you’re looking for earth-shattering innovation, you’d best look elsewhere. But if you enjoy an aimless use of just about every technique and material in the hacker’s toolkit employed with extreme craftsmanship, then this might be for you. And Nixies — he’s got Nixies in there too.

[David]’s build started out as a personal exploration of brushless motors and how they work. Some 3D-printed parts, a single coil of wire, and a magnetic reed switch resulted in a simple pulse motor that performed surprisingly well. This morphed into a six-coil motor with Hall-effect sensors and a homebrew controller. This is where [David] pulled out all the stops on tools — a lathe, a plasma cutter, a welder, a milling machine, and a nice selection of woodworking tools went into making parts for the final motor as well as an enclosure for the project. And because he hadn’t checked off quite all the boxes yet, [David] decided to use the 3D-printed frame as a pattern for casting one from aluminum.

The finished motor, with a redesigned rotor to deal better with eddy currents, joined the wood and metal enclosure along with a Nixie tube tachometer and etched brass control plates. It’s a great look for a project that’s clearly a labor of self-edification and skill-building, and we love it. We’ve seen other BLDC demonstrators before, but few that look as good as this one does.

Continue reading “Steampunk Brushless Motor Demo Pushes All The Maker Buttons”

Surgery Robot Is A Real Cut Up

A robot that performs surgery is a serious thing. One bug in the control system could end with disaster. Unless of course, you’re [Michael Reeves], in which case disaster is all part of the fun. (Video, embedded below.)

Taking inspiration from The da Vinci Surgical System, [Michael] set out to build a system that was faster, while still maintaining precision. He created a belt drive gantry system, not unlike many 3D printers, laser cutters, or woodworking CNC machines. Machines like this often use stepper motors. [Michael] decided to go with [Oskar Weigl’s] ODrive and brushless motors instead. The ODrive is on open source controller which turns off the shelf brushless motors — such as those found in R/C planes or hoverboards, into precision industrial servos. Sound familiar? ODrive was an entrant in the 2016 Hackaday Prize. [Michael] was even able to do away the ubiquitous limit switch by monitoring current draw with the ODrive.

It all adds up to a serious build. But this is [Michael “laser eye” Reeves] after all. The video is meant to be entertaining, with a hidden payload of education and inspiration. The fun starts when he arms the robot with a giant kitchen knife and performs “surgery” on a pineapple. If you want to know what happens when mannequins and fake blood enter the picture, then watch the video after the break.

Continue reading “Surgery Robot Is A Real Cut Up”

Amazing Open Source Quadruped Capable Of Dynamic Motion

The more we read about [Josh Pieper]’s quadruped, the mjbots quad A0, the more blown away we are by his year of progress on the design. Each part of the robot deserves its own article: from the heavily modified brushless motors (with custom planetary gears) to the custom motor driver designed just for this project.

[Josh], realized early on that the off-the-shelf components like an ODrive just weren’t going to cut it for his application. So he designed his own board, took it through four revisions, and even did thermal and cycle testing on it. He ended up with the compact moteus board. It can pump out 400 Watts of peak power while its 3Mbit control protocol leaves plenty of bandwidth for real time dynamic control.

The motors and gearboxes are also impressive. It took thorough experimenting and taking inspiration from other projects  before he arrived at a 8108 quad copter motor modified and upgraded so heavily its own mother wouldn’t recognize it. This is all packed into a leg unit with three degrees of freedom that puts even the fanciest servo based quadruped to shame.

Finally it’s all packed into a neat four-legged robot frame with batteries and a Pi. You can get a video summary of the robot here or after the break, and we recommend reading his blog for some more images and details.

Continue reading “Amazing Open Source Quadruped Capable Of Dynamic Motion”