Remotely Navigate The Apocalypse In Mid-Century Style

One of the few positives to come of this pandemic is that the restrictive nature of scarcity can be a boon to creativity. Plus, the doom and gloom of it all is causing people to loosen up and do things they never felt free enough to do before in the demanding world of the before times.

For example, [ossum] makes R/C vehicles on commission to exacting standards, but took a break from perfection to build this remote control hellscape-faring van by the seat of his pants. It’s quite a resourceful build that combines pieces from previous projects with a few standard R/C parts and a handful of clever hacks.

The body is a test print of a 1957 Chevy Suburban van that [ossum] made for someone a few years back. It’s mounted on a scrap metal chassis and moves on printed tank treads designed for a different vehicle.

Since glass is a liability in an apocalypse (and because [ossum] doesn’t have a resin printer yet), the windows have fortified coverings that are printed, patina’d, and detailed with tiny rivet heads.

As far as hacks go, our favorite has to be the clothespin steering. [ossum] only had one electronic speed controller, so he used a servo to actuate a pair of spring-loaded clips, alternating between the two to move the tank-van. There’s a short video after the break that shows the rack and clothes-pinion steering, and it’s loaded up right after a brief demo of the van.

We realize that everyone’s apocalyptic needs are different, but there’s more than enough here to get you started. Don’t have access to enough R/C parts? Gear boxes and drive shafts can be printed, too.

Continue reading “Remotely Navigate The Apocalypse In Mid-Century Style”

Putting A Motor Inside A Speed Controller

One of the more interesting hacks we’ve seen this year is [Carl]’s experimentations with making motors out of PCBs. Honestly, it’s surprising no one has done this before — a brushless motor is just some coils of wire and a few magnets; anyone can turn some coils into traces and make a 3D print that will hold a few magnets. This latest advancement is something else entirely. It’s a motor and an electronic speed controller all in one.

This project is a continuation of [Carl]’s PCB motor project, which started with him routing coils for a brushless motor as traces in a circuit board. Previously, we’ve seen [Carl]’s motor spinning on its own with the help of a small hobby ESC / motor controller meant for model planes and drones. This time, we’ve got something different. It’s an entire controller and motor, integrated into one single PCB.

This is a very, very small motor and ESC combo. The motor driver is a 3x3mm QFN package, and most of the other components are 0201. The main parts are a very tiny triple half-bridge motor driver and a PIC16F microcontroller. This PIC reads a hall sensor to detect the speed of the motor, and with just three pins — power, ground, and a PWM pin — this motor can spin at a set speed.

The future goals of this project are to make it work just like any other hobby ESC — just plug it into a servo controller and let ‘er rip. Since this motor with an integrated PCB requires only three connections, we’re looking at a great tool to add motion and rotation to any project. It’s fantastic, and we can’t wait to see something like this in robots, toys, and other home goods.

Continue reading “Putting A Motor Inside A Speed Controller”

Propeller Backpack For Lazy Skiers

At first glance, it looks eerily similar to Inspector Gadget’s Propeller Cap, except it’s a backpack. [Samm Sheperd] built a Propeller Backpack (video, embedded after the break) which started off as a fun project but almost ended up setting him on fire.

Finding himself snowed in during a spell of cold weather, he found enough spare RC and ‘copter parts to put his crazy idea in action. He built a wooden frame, fixed the big Rimfire 50CC outrunner motor and prop to it, slapped on a battery pack and ESC, and zip-tied it all on to the carcass of an old backpack.

Remote control in hand, and donning a pair of Ski’s, he did a few successful trial runs. It looks pretty exciting watching him zip by in the snowy wilderness. Well, winter passed by, and he soon found himself in sunny California. The Ski’s gave way to a bike, and a local airfield served as a test track. He even manages to put in some exciting runs on the beach. But the 10S 4000 mAH batteries seem to be a tad underpowered to his liking, and the motor could do with a larger propeller. He managed to source a 12S 10,000 mAH battery pack, but that promptly blew out his Aerostar ESC during the very first static trial.

He then decided to rebuild it from ground up. A ten week welding course that he took to gain some college credits proved quite handy. He built a new TiG welded Aluminium frame which was stronger and more lightweight than the earlier wooden one. He even thoughtfully added a propeller safety guard after some of his followers got worried, although it doesn’t look very effective to us. A bigger propeller was added and the old burnt out ESC was replaced with a new one. It was time for another static trial before heading out in to the wide open snow again. And that’s when things immediately went south. [Samm] was completely unaware as the new ESC gloriously burst in to flames (8:00 into the third video), and it took a while for him to realize why his video recording friend was screaming at him. Check out the three part video series after the break to follow the story of this hack. For a bonus, check out the 90 year old gent who stops by for a chat on planes and flying (8:25 in the third video).

But [Samm] isn’t letting this setback pin him down. He’s promised to take this to a logical finish and build a reliable, functional Propeller Backpack some time soon. This isn’t his first rodeo building oddball hacks. Check out his experiment on Flying Planes With Squirrel Cages.

We seem to be catching a wave of wind-powered transportation hacks these days. Hackaday’s own [James Hobson] spent time in December on a similar, arguably safer, concept. He attached ducted fans to the back of a snowboard. We like this choice since flailing limbs won’t get caught in these types of fans.

Continue reading “Propeller Backpack For Lazy Skiers”

Open Source ESC Developed For Longboard Commute

For electric and remote control vehicles – from quadcopters to electric longboards – the brains of the outfit is the Electronic Speed Controller (ESC). The ESC is just a device that drives a brushless motor in response to a servo signal, but in that simplicity is a lot of technology. For the last few months, [Ben] has been working on a completely open source ESC, and now he’s riding around on an electric longboard that’s powered by drivers created with his own hands.

esc-for-longboardThe ESC [Ben] made is built around the STM32F4, a powerful ARM microcontroller that’s able to do a lot of computation in a small package. The firmware is based on ChibiOS, and there’s a USB port for connection to a sensible desktop-bound UI for adjusting parameters.

While most hobby ESCs are essentially black boxes shipped from China, there is a significant number of high performance RC pilots that modify the firmware on these devices. While these new firmwares do increase the performance and response of off-the-shelf ESCs, building a new ESC from scratch opens up a lot of doors. [Ben]’s ESC can be controlled through I2C, a UART, or even a CAN bus, greatly opening up the potential for interesting electronic flying machines. Even for ground-based vehicles, this ESC supports regenerative braking, sensor-driven operation, and on-board odometry.

While this isn’t an ESC for tiny racing quadcopters (it’s complete overkill for that task) this is a very nice ESC for bigger ground-based electric vehicles and larger aerial camera platforms. It’s something that could even be used to drive a small CNC mill, and certainly one of the most interesting pieces of open source hardware we’ve seen in a long time.

Continue reading “Open Source ESC Developed For Longboard Commute”