Open Source High Power EV Motor Controller

For anyone with interest in electric vehicles, especially drives and control systems for EV’s, the Endless-Sphere forum is the place to frequent. It’s full of some amazing projects covering electric skateboards to cars and everything in between. [Marcos Chaparro] recently posted details of his controller project — the VESC-controller, an open source controller capable of driving motors up to 200 hp.

[Marcos]’s controller is a fork of the VESC by [Benjamin Vedder] who has an almost cult following among the forum for “creating something that all DIY electric skateboard builders have been longing for, an open source, highly programmable, high voltage, reliable speed controller to use in DIY eboard projects”. We’ve covered several VESC projects here at Hackaday.

While [Vedder]’s controller is aimed at low power applications such as skate board motors, [Marcos]’s version amps it up several notches. It uses 600 V 600 A IGBT modules and 460 A current sensors capable of powering BLDC motors up to 150 kW. Since the control logic is seperated from the gate drivers and IGBT’s, it’s possible to adapt it for high power applications. All design files are available on the Github repository. The feature list of this amazing build is so long, it’s best to head over to the forum to check out the nitty-gritty details. And [Marcos] is already thinking about removing all the analog sensing in favour of using voltage and current sensors with digital outputs for the next revision. He reckons using a FPGA plus flash memory can replace a big chunk of the analog parts from the bill of materials. This would eliminate tolerance, drift and noise issues associated with the analog parts.

[Marcos] is also working on refining a reference design for a power interface board that includes gate drivers, power mosfets, DC link and differential voltage/current sensing. Design files for this interface board are available from his GitHub repo too. According to [Marcos], with better sensors and a beefier power stage, the same control board should work for motors in excess of 500 hp. Check out the video after the break showing the VESC-controller being put through its paces for an initial trial.

Continue reading “Open Source High Power EV Motor Controller”

Simple Electric Bike Conversion from 3D-Printed Parts

Challenge: Perform an electric conversion on a bicycle. Problem: No significant metal working skills or equipment. Solution: 3D print everything needed to electrify the bike.

At least that’s the approach that [Tom Stanton] took to his electric bike build. Having caught the electric locomotion bug on a recent longboard build, [Tom] undertook the upgrade of a cheap “fixie,” or fixed-gear bike. His delta printer was big enough for the motor mount and weather-resistant ESC enclosure, but he needed to print the drive pulley in four quadrants that were later glued together. We can’t say we hold much faith in the zip ties that transmit all the torque through the rear wheel’s spokes, but as a proof of concept it seems sturdy enough. With a throttle from an electric scooter and a battery in a saddle bag, the bike turns in pretty decent performance — at least after a minor gearing change. And everything blends in or accents the black frame of the bike, so it’s a good-looking build to boot.

Want to catch the cheap electric personal transportation bug too? Check out this electric longboard, or this all-terrain hoverboard.

Continue reading “Simple Electric Bike Conversion from 3D-Printed Parts”

Propeller Backpack for Lazy Skiers

At first glance, it looks eerily similar to Inspector Gadget’s Propeller Cap, except it’s a backpack. [Samm Sheperd] built a Propeller Backpack (video, embedded after the break) which started off as a fun project but almost ended up setting him on fire.

Finding himself snowed in during a spell of cold weather, he found enough spare RC and ‘copter parts to put his crazy idea in action. He built a wooden frame, fixed the big Rimfire 50CC outrunner motor and prop to it, slapped on a battery pack and ESC, and zip-tied it all on to the carcass of an old backpack.

Remote control in hand, and donning a pair of Ski’s, he did a few successful trial runs. It looks pretty exciting watching him zip by in the snowy wilderness. Well, winter passed by, and he soon found himself in sunny California. The Ski’s gave way to a bike, and a local airfield served as a test track. He even manages to put in some exciting runs on the beach. But the 10S 4000 mAH batteries seem to be a tad underpowered to his liking, and the motor could do with a larger propeller. He managed to source a 12S 10,000 mAH battery pack, but that promptly blew out his Aerostar ESC during the very first static trial.

He then decided to rebuild it from ground up. A ten week welding course that he took to gain some college credits proved quite handy. He built a new TiG welded Aluminium frame which was stronger and more lightweight than the earlier wooden one. He even thoughtfully added a propeller safety guard after some of his followers got worried, although it doesn’t look very effective to us. A bigger propeller was added and the old burnt out ESC was replaced with a new one. It was time for another static trial before heading out in to the wide open snow again. And that’s when things immediately went south. [Samm] was completely unaware as the new ESC gloriously burst in to flames (8:00 into the third video), and it took a while for him to realize why his video recording friend was screaming at him. Check out the three part video series after the break to follow the story of this hack. For a bonus, check out the 90 year old gent who stops by for a chat on planes and flying (8:25 in the third video).

But [Samm] isn’t letting this setback pin him down. He’s promised to take this to a logical finish and build a reliable, functional Propeller Backpack some time soon. This isn’t his first rodeo building oddball hacks. Check out his experiment on Flying Planes With Squirrel Cages.

We seem to be catching a wave of wind-powered transportation hacks these days. Hackaday’s own [James Hobson] spent time in December on a similar, arguably safer, concept. He attached ducted fans to the back of a snowboard. We like this choice since flailing limbs won’t get caught in these types of fans.

Continue reading “Propeller Backpack for Lazy Skiers”

Long-range Electric Longboard Outlasts Rider

What could be better than a holiday ride past the palm trees and blue waters of a Mediterranean resort town? Perhaps making that ride on a long-range electric longboard of your own design will ice that particular cake.

And when we say long range, we mean it – an estimated 25 miles. The only reason [overclocker_kris] couldn’t come up with an exact number in the test drive seen below is that he got too tired to continue after mile 20. With a bit of juice left in the 64-cell battery pack, built from 18650s harvested from old laptops, the board was sure to have another five miles in it. A custom molded underslung carbon fiber enclosure houses the battery pack and electronics, including the receiver for the handheld remote control and the ESCs for the two motors. Motor mounts were fabbed from aluminum and welded to the trucks, with power transmission through timing belts to 3D-printed pulleys. It’s a good-looking build, and topping out at 22 MPH isn’t too shabby either.

We’ve covered fleets of electric longboards before, from those with entirely 3D-printed decks to one with a flexible battery pack. But we doubt any have the endurance and performance of this board.

Continue reading “Long-range Electric Longboard Outlasts Rider”

Hacking R/C Brushless Motor Controllers for Use in Big Robots

[professor churlz] wrote in to let us know his results with modifying radio control ESCs (Electronic Speed Controllers) for use in a large (250lb range) BattleBot’s drivetrain. It’s a very long and involved build log entry that is chock-full of details and background.

If you want something spinning hard and fast, brushless is where it’s at. Brushless motors offer much better power-to-weight ratios compared to brushed DC motors, but some applications – like a large robot’s drivetrain – are less straightforward than others. One of the biggest issues is control. Inexpensive brushless motors are promising, but as [professor churlz] puts it, “hobby motor control equipment is not well suited for the task. Usually created for model airplanes, the controllers are lightly built, rated to an inch of the components’ lives using unrealistic methods, and usually do not feature reversing or the ability to maintain torque at low speeds and near-stall conditions, which is where DC motors shine.” Taking into account the inertia of a 243 lb robot is a factor as well – the controller and motor want to start moving immediately, but the heavy robot on the other side of it doesn’t. The answer was a mixture of hardware and firmware tweaking with a lot of testing.

Continue reading “Hacking R/C Brushless Motor Controllers for Use in Big Robots”

Adding Position Control To An Open Source Brushless Motor Driver

Brushless motors are everywhere now. From RC planes to CNC machines, if you need a lot of power to spin something really fast, you’re probably going to use a brushless motor. A brushless motor requires a motor controller, and for most of us, this means cheap Electronic Speed Controllers (ESC) from a warehouse in China. [Ben] had a better idea: build his own ESC. He’s been working on this project for a while, and he’s polishing the design to implement a very cool feature – position control.

We’ve seen [Ben]’s work on his custom, homebrew ESC before. It is, by any measure, a work of art. It’s capable of driving brushless and brushed motors with a powerful STM32F4 microcontroller running ChibiOS that’s able to communicate with other microcontrollers through I2C, UART, and CAN bus. If you want to build anything with a motor – from a CNC machine to an RC helicopter to an electric long board – this is the motor controller for you.

[Ben]’s latest update considers position encoders. Knowing how fast a motor is turning is very important to knowing how fast a wheel is turning, how much torque the motor is generating, and an awesome step in building the finest motor controller ever made.

Like the last update, [Ben] demonstrates the great control program written for this ESC. This GUI programs the microcontroller on the controller, with protection from high and low voltages and currents, high RPMs, duty cycle changes, and support for regenerative braking.

Thanks [Dudelbert] for sending this one in.

Continue reading “Adding Position Control To An Open Source Brushless Motor Driver”

Open Source ESC Developed for Longboard Commute

For electric and remote control vehicles – from quadcopters to electric longboards – the brains of the outfit is the Electronic Speed Controller (ESC). The ESC is just a device that drives a brushless motor in response to a servo signal, but in that simplicity is a lot of technology. For the last few months, [Ben] has been working on a completely open source ESC, and now he’s riding around on an electric longboard that’s powered by drivers created with his own hands.

esc-for-longboardThe ESC [Ben] made is built around the STM32F4, a powerful ARM microcontroller that’s able to do a lot of computation in a small package. The firmware is based on ChibiOS, and there’s a USB port for connection to a sensible desktop-bound UI for adjusting parameters.

While most hobby ESCs are essentially black boxes shipped from China, there is a significant number of high performance RC pilots that modify the firmware on these devices. While these new firmwares do increase the performance and response of off-the-shelf ESCs, building a new ESC from scratch opens up a lot of doors. [Ben]’s ESC can be controlled through I2C, a UART, or even a CAN bus, greatly opening up the potential for interesting electronic flying machines. Even for ground-based vehicles, this ESC supports regenerative braking, sensor-driven operation, and on-board odometry.

While this isn’t an ESC for tiny racing quadcopters (it’s complete overkill for that task) this is a very nice ESC for bigger ground-based electric vehicles and larger aerial camera platforms. It’s something that could even be used to drive a small CNC mill, and certainly one of the most interesting pieces of open source hardware we’ve seen in a long time.

Continue reading “Open Source ESC Developed for Longboard Commute”