Taking GPS Where No Man Has Gone Before

[Willem] has a friend that wanted to take a GPS datalogger up an unclimbed mountain the wilds of Kyrgyzstan. The GPS logger built for the expedition made it to the summit of Eggmendueluek, but it didn’t work the whole way up. Since the logger came back to London, [Willem] was able to do a complete teardown and failure analysis.

The data logger was built around a Jeenode with a GPS unit and MicroSD card reader added on. A few breakout boards were made and two of these bad boys were ensconced in water and dust proof enclosures. Powered by four AA batteries, the data loggers were able to handle the rigorous testing of being thrown down a staircase and also the harsh temperatures of London. Things changed in the wilds of Kyrgyzstan, though.

The data retrieved from the mountaineering expedition wasn’t the greatest – a few wires came loose after being thrown into the back of a Russian truck and jostled around. The AA batteries only powered the data loggers for three days, compared to the 12 day battery life in London. There are a few improvements needed for the next trip – some thermal insulation and not using solid core wire – but not that [Willem] has figured out the bugs he’s ready for his friend’s next expedition.

Hacked Parking Disc Can Be Controlled Remotely

reverse_engineering_parking_disc

If you have ever traveled around Europe, you are likely familiar with parking discs. Required in many countries that would rather not deal with parking meters, these devices are placed in the front of a car’s window, and indicate when the vehicle was parked. When parking enforcement officers come through the area, it makes quick work of identifying which cars need to be ticketed.

[Michael] received a fancy electronic parking disc as a gift, but the device was incredibly buggy, causing him all sorts of grief. After contacting the manufacturer and receiving no helpful response, he took it upon himself to get things working properly.

He dismantled the disc and found that like many products today, the microprocessors were locked down behind a layer of hard resin. Undeterred, he decided to rebuild it from the ground up using an ATmega microcontroller to provide basic parking disc functionality. He also armed his disc with a GSM modem and a GPS receiver – the former gives him the ability to communicate with the device, while the latter provides accurate time data while allowing him to keep tabs on the car’s location, should the need arise.

The hacked disc’s guts reside in his glove box, and can be controlled using his iPhone, making it easy to tweak his parking time at will.

Check out the video below to see his parking clock in action, and if you have questions on any part of the build, [Michael] says he’s more than happy to fill in any missing details.

Continue reading “Hacked Parking Disc Can Be Controlled Remotely”

All About The Google Autonomous Vehicle Project

There have been many self-driving cars made with different levels of success, but probably the most well-known project is the Google car.  What you may not have heard of, though is the autonomous Google cart, or golf cart to be exact. The first video after the break explains the motivation behind the cart and the autonomous vehicle project.  As with another autonomous vehicle we’ve featured before, they didn’t forget to include an E-stop button (at 1:03)!

In the second video (also after the break) Google’s Sebastian Thrun and Chris Urmson get into more of the details of how Google’s more famous autonomous Prius vehicles work and their travels around different towns in California. A safety driver is still used at this point, but the sensor package includes a roof-mounted 64-beam laser sensor, wheel encoder, radars, and a GPS sensor. With Google’s vast resources as well as their work with Streetview and Google maps, it’ll be interesting to see what comes of this technology.  I, for one, welcome our new robotic overlords.

Continue reading “All About The Google Autonomous Vehicle Project”

Hacking SPOT Personal Satellite Tracker To Pass More Information

For less than $100 you can buy a little tracking module that will upload your location to a satellite. But you’ll only get latitude and longitude information. [Natrium42] spent some time reverse engineering the hardware, and the communications protocol, to allow custom data to be transferred using a SPOT module.

The flat fee for the hardware includes a one-year service plan allowing you to tack your device on the SPOT website. [Natrium42] started poking around in the transmitted data packages, and figured he could push custom messages like altitude data if he had some way to encode it as a valid latitude/longitude package. He found that location data is transmitted as two sets of three bytes each. The four least significant bits of each set get rounded by the server, leaving a total of 40 usable bits between the two data sets. He wrote encoding and decoding functions that will allow you to transfer whatever information you want.

So what is this good for? To get the process working he removed the MSP430 microcontroller from the board and is using his own replacement. So you can transmit GPS data from the onboard module, your own module, or sensor data for anything you’re able to hook up the to the replacement uC.

Make Your Own GPS Receiver!

GPS receivers may be available for well under $100 these days, but what’s the fun in buying one when you can build it yourself? According to [Andrew], the creator of this device, he was inspired by Matjaž Vidmar who developed a GPS receiver from scratch over 20 years ago. His article can be found here and includes some nicely hand-drawn diagrams as well as a lot of theory.

However, [Andrew’s] article is a bit more up-to-date and features plenty of theory itself. He explains how he built his four-channel GPS receiver, able to track four satellites at the same time. This is the minimum number of satellites needed to track your position using such a device.

GPS technology is quite incredible, and the amount of soldering as well as the understanding of the theory behind it required to build such a device is astonishing. Interestingly (sadly?), it seems we are beyond the time of LORAN hacks, but if you have an old one to share, be sure to send it in! For something a bit easier, maybe one could try making a GPS “cateye” to track what your pet does all day!

Fake PS3 Tracks Thieves All The Way Home

ps3_tracking_system

One of [Wayne’s] relatives had their house robbed during a blizzard/extended power outage, and as is typically the case, none of the stolen items were recovered. His nephew’s PS3 was among the pilfered belongings, which didn’t sit well with him. Taking a cue from police “bait cars”, he thought it would be cool to fit a dummy game console with a tracking device, should anything similar happen in the future.

He bought a hollowed out PS3 shell on eBay, filling it with an Arduino, an accelerometer, a GPS sensor, a small GSM modem with a prepaid SIM card, and a reasonably sized LiPoly battery. The system usually sits in a sleeping state, but when the accelerometer senses motion, the Arduino powers up the GSM modem and sends an SMS security alert to his mobile phone. Using his phone to control the tracking system via SMS, he can request GPS coordinates and directional information, which can then be relayed to the police.

His tracking system is a great idea since hawking stolen game consoles are easy money for thieves. If there happens to be a string of robberies in your neighborhood, you could certainly rest a little bit easier knowing that your Playstation doppelganger will let you know if someone is looting your house.

Flip Off Your Alarm Clock!

flipclock

[Corbin] hates fumbling around in the dark with his alarm blaring, looking for the off switch. He was so annoyed with regular alarm clocks that he decided to build his own simpler timepiece.

The FlipClock resides in a simple black plastic case lacking any buttons whatsoever. When the alarm goes off, all one needs to do is flip the clock over to disable it. The digits automatically right themselves using an accelerometer to detect when the clock has been turned upside down, and an indicator LED lets you know that the alarm has been turned off.

The clock is based around a Propeller chip, which manages all of the clock’s operations. Instead of using a real time clock IC, [Corbin] is using a GPS module to keep accurate time, something we don’t recall seeing in an alarm clock  before. That’s a good thing though, since there are no buttons with which to set the clock. In fact, there are no buttons to set the alarm either – the clock is configured to sound the alarm at the same time each day.

While this clock would certainly be too dangerous for a chronic snooze button abuser like myself, it’s an interesting concept nonetheless!

Check out the video below to see the FlipClock in action.

Continue reading “Flip Off Your Alarm Clock!”