Learning Morse Code The Ludwig Koch Way

Most countries have dropped the requirement for learning Morse code to become a ham radio operator. Because of that, you might think Morse code is dead. But it isn’t. Some people like the nostalgia. Some like that you can build simple equipment to send and receive Morse code. Others like that Morse code is much more reliable than voice and some older digital modes. Regardless of the reason, many people want to learn Morse code and it is still a part of the ham radio scene. The code has a reputation of being hard to learn, but it turns out that is mostly because people haven’t been taught code in smart ways.

I don’t know if they still do, but some youth organizations used to promote some particularly bad ways to learn the code. The second worse way is to learn “dots and dashes” and many people did learn that way. The very worst way was using an image like the adjacent one to try to map the dots and dashes into letter shapes. This chart dates back to at least 1918 when a Girl Guides handbook printed it.

Even if you are a visual learner, this is a bad idea. The problem is, it is nearly impossible to hear sounds at 20 or 30 words per minute and map them to this visual representation. Another visual method is to use a binary tree where left branches are dots and right branches are dashes.

If you only need to master 5 words per minute to get a merit badge, you might get away with this. But for real use, 5 words a minute is very slow. For example, this sentence would take about 3 minutes to send at that speed. Just that one sentence.

So what are the better ways? Let’s take a look.

Continue reading “Learning Morse Code The Ludwig Koch Way”

Stout Homebrew Radio Pumps Out 200W Of AM Goodness

In this day and age, with cheap online shopping, software defined radio and bargain-basement Baofengs from China, the upstart radio ham is spoilt for choice. Of course, there’s nothing quite like the charm of keying up your own homebrewed rig, cooked up in the garage from scratch. [Paul], aka [VK3HN], knows just how it feels, and put together an epic 200 watt Class D AM rig to blast his signal on the airwaves.

An example of an Arduino used in one of [Paul]’s builds.
It’s a build following on from the work of another radio ham, [Laurie], aka [VK3SJ]. Younger hackers will note the Arduino Nano at the heart of the project, running the VFO and handling all the relevant transmit/receive switching. We can only imagine how welcome modern microcontrollers must have been to old hands at amateur radio, making synthesizing all manner of wild frequencies a cinch.

The amount of effort that has gone into the build is huge. There are handwound coils for the PWM low-pass filter, and the PCB is home-etched in ferric chloride, doing things the old-school way. There’s also a healthy pile of dead components that sacrificed their lives in the development of this build. Perhaps our favorite part is the general aesthetic – we can’t get over the combination of hand-drawn copper traces and off-the-shelf Arduinos.

Many components perished in the development of this powerful rig.

It’s a build that far exceeds the Australian legal limits, so it only gets keyed up to 120W in real use. This has the benefit of keeping the radio operating far in the safety zone for its components, helping keep things cool and stable. We’re sure [Paul] will be getting some great contacts on this rig. If you’re suffering from low power yourself, consider an amplifer build. Video after the break.

Continue reading “Stout Homebrew Radio Pumps Out 200W Of AM Goodness”

The $50 Ham: Going Mobile

So far in this series, everything we’ve covered has been geared around the cheapest and easiest possible means of getting on the air: getting your Technician license, buying your first low-end portable transceiver, and checking in on the local repeater nets. That’s all good stuff, and chances are you can actually take all three of those steps and still have change left over from your $50 bill. Like I said, amateur radio doesn’t have to be expensive to be fun.

But at some point, every new ham is going to yearn for that first “real” rig, something with a little more oomph in terms of power, and perhaps with a few more features. For many Technicians, the obvious choice is a mobile rig, something that can be used to chat with fellow hams on the way to work, or to pass the time while on long road trips. Whatever your motivation is, once you buy a radio, you have to install it, and therein lie challenges galore, both electrical and mechanical.

I recently took the plunge on a mobile rig, and while the radio and antenna were an order of magnitude more expensive than $50, the process of installing it was pretty cheap. But it’s not the price of the thing that’s important in this series; rather, it’s to show that ham radio is all about doing it yourself, even when that means tearing your car apart from the inside out and rebuilding it around a radio.

Continue reading “The $50 Ham: Going Mobile”

Intercontinental Radio Communications With The Help Of Fly Fishing Reels

All of us have experience in trying to explain to a confused store assistant exactly what type of kitchen implement you’re looking for, and why it is a perfectly suitable part for your autonomous flying lawn mower. Or in the case of [MM0OPX] trying to find fly fishing reels that are suitable for his  Adjustiwave multi-band VHF-HF  ham radio antenna.

HF radios allow intercontinental communication but require very large antennas which can be tricky to tune properly, and this antenna helps ease both these problems. The basic configuration is quarter wave, linear loaded (folded), vertical antenna. A quarter wave length radiator wire runs up a fibreglass pole, folds over the top, and comes back down, to form a shorter, more practical antenna while remaining the required length. Ground plane radial wires are usually added to improve performance by helping to reflect signals into antenna.

[MM0OPX] expanded this concept by using two pairs of fly fishing reels to quickly adjust the length of the radiators and radials. One reel holds the actual antenna wire while the second holds fishing braid, which is tied to the end of the wire to provided tension. The radials wire is exactly the same, it just runs across the ground.

The four reels are mounted to a plastic junction box, which houses the feed line connector and matching transformer, which is attached to the base of a fibreglass pole with hydraulic pipe clamps. Each wire is marked with heat shrink at defined points to allow quick tuning for the different frequencies. [MM0OPX] tried a couple of wire types and found that 1 mm stainless steel cable worked best.

This being Hackaday, we are big fans of repurposing things, especially when the end product is greater than the sum of its parts, as is the case here. Check out the walk around and build discussion videos after the break. Continue reading “Intercontinental Radio Communications With The Help Of Fly Fishing Reels”

Raspberry Pi Ham Radio Remote Reviewed

One problem with ham radio these days is that most hams live where you can’t put a big old antenna up due to city laws and homeowner covenants. If you’re just working local stations on VHF or UHF, that might not be a big problem. But for HF usage, using a low profile antenna is a big deal. However, most modern radios can operate remotely. Well-known ham radio company MFJ now has the RigPi Station Server and [Ham Radio DX] has an early version and did a review.

As the name implies, the box contains a Raspberry Pi. There’s also an audio interface. The idea is to consolidate rig control along with other station control (such as rotators) along with feeding audio back and forth to the radio. It also sends Morse code keying to the radio. The idea is that this box will put your radio on the network so that you operate it using a web browser on a PC or a mobile device.

According to MFJ, you can operate voice, Morse code, or digital modes easily and remotely. The box uses open source software that can control over 200 different radios and 30 rotors. Of course, you could build all this yourself and use the same open source software, but it is nicely packaged. [Ham Radio DX] says you don’t need to know much about the Pi or Linux to use the box, although clearly you can get into Linux and use the normal applications if you’re so inclined.

Even if you don’t want to transmit, we could see a set up like this being used for remote monitoring. We’d like to see a companion box for the remote end that had the audio hardware, a keyer, and perhaps a knob to act as a remote control of sorts. Of course, you could probably figure out how to do that yourself. We wonder if some ham clubs might start offering a remote radio via an interface like this — we’ve seen it done before, but not well.

Your $50 radio probably isn’t going to work with this, and if you use FT8, you could argue you don’t need to be there anyway.

Continue reading “Raspberry Pi Ham Radio Remote Reviewed”

Bouncing Signals Off The Moon

One of the great things about ham radio is that isn’t just one hobby. Some people like to chit chat, some like to work foreign countries, some prepare for emergencies, and there are several space-related activities. There are hundreds of different kinds of activities to choose from. Just one is moonbounce, and [Ham Radio DX] decided to replicate a feat many hams have done over the years: communicate with someone far away by bouncing signals from the moon.

The set up is pretty sophisticated but not as bad as you might imagine. You can see that they spend a lot of time getting the equipment aligned. A known reference point helps them set the position of the antenna. A GPS keeps both stations in sync for frequency and time.

Continue reading “Bouncing Signals Off The Moon”

Hackable Ham Radio Multitool Contributes To Long Term Survival Of The Hobby

Ham radio, especially the HF bands, can be intimidating for aspiring operators, many being put off by the cost of equipment. The transceiver itself is only part of the equation and proper test and measurement equipment can easily add hundreds of dollars to the bill. However, such equipment goes a long way to ease the frustrations of setting up a usable station. Fortunately [Ashhar Farhan, VU2ESE] has been at it again, and recently released the Antuino, an affordable, hackable test instrument for ham radio and general lab for use.

As you can probably guess from the name, it is primarily intended for testing antennas, and uses an Arduino Nano as a controller. It has quite a list of measurement functions including SWR, field strength, cable loss, RF cable velocity, modulation, and frequency response plotting. It also provides a signal source for testing. Its frequency range includes the HF and VHF bands, and it can even work in the UHF bands (435Mhz) if you are willing to sacrifice some sensitivity. The software is open source and available with the schematics on Github.

Most of the active ham radio operators today are of the grey haired, retired variety. If the hobby is to stand any chance of outliving them, it needs to find a way to be attractive to the younger generations who grew up with the internet. The availability of affordable and hackable equipment can go long way to making this happen, and [Ashhar Farhan] has been one of the biggest contributors in this regard. His $129 μBITX HF SSB/CW transceiver kit is by far the best value for money general coverage HF radio available.

See a short demonstration of the Antuino video after the break

Continue reading “Hackable Ham Radio Multitool Contributes To Long Term Survival Of The Hobby”