Building An Aluminum RC Truck From Scratch

These days you can get just about any kind of radio controlled vehicle as a ready-to-run model. Cars, trucks, excavators, you name it. Open the box, charge the batteries, and you’re ready to roll. Even with all these modern conveniences, there is still a special breed of modelers who create their own models using only a few off-the-shelf parts.

[Rini Anita] is exactly that rare breed, creating this aluminum RC truck from scratch. The truck itself is a cab-over — short for Cab Over Engine (COE), a style seen making local deliveries worldwide. He starts with the ladder frame chassis, which is constructed using an extruded aluminum channel. This is the same material you’d normally use for the door tracks in retail store display cases. The electronics and standard RC fare: a receiver, electronic speed control, and a servo for steering. Batteries are recycled lithium cells. The main gearbox and drive axle look to be sourced from another RC vehicle, while leaf springs and suspension components are all custom built.

The truck’s body is a great example hand forming metal. First, a wooden form was created. Sections for the windows and door panels were carved out. Sheet aluminum was then bent over the wood form. Carefully placed hammer blows bend the metal into the carved sections – leaving the imprints of doors, windows, and other panel lines.

Throughout this build, we’re amazed by [Rini]’s skills, and the fact that the entire job was done with basic tools. A grinder, an old drill press, and a rivet gun are the go-to tools; no welder or 3D printer to be found. This puts a project like this well within the means of just about any hacker — though it may take some time to hone your skills! For his next truck, maybe [Rini] can add a self driving option!

Continue reading “Building An Aluminum RC Truck From Scratch”

DIY Plastic Speedboat For One

Coroplast (short for corrugated plastic) is an interesting material. It has a structure similar to cardboard, but since it’s plastic it’s waterproof and can be used for a unique set of applications. It’s typically used for political yard signs, but there are more fun things to do with this lightweight material than advertise. [Paul Elkins], for example, uses it to make speedboats.

The boats that [Paul] builds make use of a piece of coroplast which he cuts and folds into a basic hull shape. From there he begins to assemble the other things needed to finalize the boat, including strengthening the shape with wood, adding a steering wheel, building a transom to mount the motor to, and placing controls in the cockpit such as throttle and steering. The entire build is enough to propel a single person on a body of water at about five knots, which is impressive.

To make one of these yourself you’ll need a small outboard motor, but all of the other details of the build are outlined clearly in his series of videos. If you want to build your own boat but don’t like the idea of a noisy two-stroke motor right behind you, you can also look into building a boat with a silent mode of propulsion.

And if you’ve got a good supply of Coro, definitely check out [Paul]’s other projects, including a tiny house.

Continue reading “DIY Plastic Speedboat For One”

Bespoke, Artisanal, Hand Made Executables

Programmers and software engineers will always use the latest development environments, the trendiest frameworks, and languages they learned only 21 days ago. What if this weren’t the case? What if developers put care into their craft and wrote programs with an old world charm? What if Windows executables were made with the same patience as artisanal firewood, or free range granola? [Steve] has done it. He’s forging a path into the wilds of truly hand crafted executables.

The simplest executable you could run on a Windows box is just a simple .COM file. This is an extremely simple file format that just contains code and data loaded into 0100h, and a jump to another point in the code. The DOS .EXE file format is slightly more complicated, but not by much. [Steve]’s goal was to build a proper Windows executable without a compiler, assembler, linker, or anything else.

Continue reading “Bespoke, Artisanal, Hand Made Executables”

Hand Made Carbon Fiber Violin Is A Stunning Work Of Craftsmanship

carbon-fiber-violin

Building a violin by hand is no easy task, but constructing one out of carbon fiber is an amazing feat! Carpenter [Ken] had never made a violin before, nor built anything substantial out of carbon fiber, and he figured the best way to learn was by doing.

He spent a good bit of time measuring and drawing out his design before making fiberglass molds of the violin’s front and back plates from carved plaster plugs. The process was extremely time consuming, requiring him to make 10 different infusion-molded carbon fiber body plates before he was satisfied with the sound they produced.

With the larger parts of the violin’s body built, he started on the rib molds, which took him 5 hours apiece to set up before injecting the resin. With the body complete, [Ken] was ready to cut the f holes into the violin – a process that required a lot of time hunched over a tank of water with Dremel in hand.

As you can see in the picture above, the final result is stunning – we just wish we could give it a listen to see if it sounds as good as it looks.

Building A Robot Without Using A Machine Shop

We usually avoid the prospect of buying new tools just for one project. In the long run we’re sure we’d use them again, but sometimes even with that outlook you can’t afford it. Case in point is our life-long-lust for a laser cutter; we just can’t justify the upfront cost but we sure would use it constantly if we had one.

If you do find that you’re interested in taking on a project that calls for laser cut parts, [I Heart Robotics] shows you how to do it with a few simple hand tools. The bot seen above is their TurtleBot. You can cut your own parts using a laser cutter, you can buy a kit from them, or you can bust out a ruler, compass, drill, coping saw, printer, and tape to make the pieces by hand.

It’s a simple enough concept. Print out the templates, tape them to your hard board, then start drilling and sawing. You won’t get the precision a machine tool can, but in some cases you don’t need to be all that perfect.

[via Adafruit]