Hydroelectric Generator Gets Power From Siphoning

Siphons are one of those physics phenomena that, like gyroscopes, non-Newtonian fluids, and electricity, seem almost magical. Thanks to atmospheric pressure, simply filling a tube with liquid and placing the end of the tube below the liquid level of a container allows it to flow against gravity, over a barrier, and down into another container without any extra energy inputs once the siphon is started. They’re not just tricks, though; siphons have practical applications as well, such as in siphon-powered hydroelectric turbine.

This is an iteration of [Beyond the Print]’s efforts to draw useful energy from a local dam with an uneconomic amount of water pressure and/or volume for a typical hydroelectric power station. One of his earlier attempts involved a water wheel but this siphon-based device uses a more efficient impeller design instead, and it also keeps the generator dry as well. Using 3″ PVC piping to channel the siphon, as well as a short length of thinner pipe to attach a shop vac for priming the siphon, water is drawn from the reservoir, up the pipe, and then down through the impeller which spins a small DC generator.

This design is generating about 9 V open-circuit, and we’d assume there’s enough power available to charge a phone or power a small microcontroller device. However, there’s a ton of room for improvement here. The major problem [Beyond the Print] is currently experiencing is getting air into the system and having the siphon broken, which he’s solved temporarily by adding a bucket at the outflow. This slows down the water though, so perhaps with any air leaks mitigated the power generation capabilities will be greatly increased.

Continue reading “Hydroelectric Generator Gets Power From Siphoning”

E-Bike Motor Gets New Life As Hydro Plant

For economic reasons, not every lake with a dam can support a hydroelectric power plant. Some rivers or creeks are dammed for flood control or simply for recreation, and don’t have the flow rate or aren’t deep enough to make the investment of a grid-scale generation facility worthwhile. But for those of us with a few spare parts around and access to a small lake, sometimes it’s possible to generate a usable amount of energy with just a bit of effort.

[Beyond the Tint] is building this mostly as a proof-of-concept, starting with a 1,000W hub motor from an e-bike that’s been removed from its wheel. A 3D-printed waterwheel attachment is installed in its place, and the fixed shaft is attached to a homemade ladder-looking mechanism that allows the entire generator to be lowered into the flow of a moving body of water, in this case, a small stream. A bridge rectifier converts the AC from the hub motor (now a generator) into DC, and after a few measurements and trials, [Beyond the Tint] produced over 30W with the first prototype.

A second prototype was made with feedback from the first video he produced, this time with an enclosed paddlewheel. This didn’t appear to make much difference at first, but a more refined impeller may make a difference in future prototypes. Small-scale hydropower is a fairly popular challenge to tackle, especially in the off-grid community. With access to even a small flowing stream and enough elevation change, it’s possible to build something like this generator out of parts from an old washing machine.

Continue reading “E-Bike Motor Gets New Life As Hydro Plant”

Living Off The Grid, On Water Power

When you think of living off the grid, you often think of solar power. But if you’ve got a good head, and enough flow, water power can provide a much more consistent flow of electrons. All it requires is a little bit of engineering, epic amounts of manual labor, and some tricks of the trade, and you’ll have your own miniature hydroelectric power plant.

[Homo Ludens], the playful ape, has what looks like a fantastic self-sufficient home/cabin in a beautiful part of Chile. His webpages are a tremendous diary of DIY, but the microhydro plant stands out.

You might expect that building a hydro plant involves a lot of piping, and trenching to lie that pipe in, but the exact extent, documented in many photos, is sobering. At places, the pipe needed to be bent, and [Homo Ludens] built a wire-mesh pipe heater to facilitate the work — with the help of a few friends to weigh the pipe down at either end and create the bend. The self-wound power transformer is also a beauty.

There’s a lot more detail here than we can possibly get into, so go check it out. And if you’re in the mood for more hydro, we’ve recently run a writeup of a less ambitious, but still tidy, project that you should see. Or you could just rip apart an old washing machine.

Thanks [Patrick] for the great tip!

Tinijet — Affordable Waterjet Cutting At Home

While laser cutting remains the dominant force for rapid prototyping anything made of plastic, MDF or wood, the real holy grail is the ability to cut metal — something most laser cutters are just not capable of.

In the industry, this is done using extremely high-powered laser cutters, plasma cutters, or water jet cutters. All of which are very pricey equipment for a hacker. Until now anyway. Introducing the Tinijet, the missing tool for affordable water jet cutting.

We first covered this project a few years ago when it was just a university research project called Hydro — it’s since evolved immensely, and will be available for sale very soon.

Continue reading “Tinijet — Affordable Waterjet Cutting At Home”

Hydroelectric Power In Your Shoes

All comments on style aside, these are pretty cool. They are power generating shoes, that use water and a small turbine. As you step down, the water is forced through the turbine and recirculated back to the reservoir when you lift your foot. It may not change the world, but is definitely interesting. This reminds us of those shoes that we used to pump up til they burst.