Nanoparticles Rip Hydrogen From Water

Hydrogen fuel is promising, and while there’s plenty of hydrogen in the air and water, the problem is extracting it. Researchers have developed a way to use aluminum nanoparticles to rip hydrogen out of water with no additional energy input. It does, however, require gallium to enable the reaction. The reaction isn’t unknown (see the video below), but the new research has some interesting twists.

Aluminum, of course, is cheap and plentiful. Gallium, not so much, but the process allows recovery and reuse of the gallium, so that makes it more cost-effective. There is a patent pending for the process and — of course — the real trick is making the aluminum nanoparticles. But if you have that, this is a simple way to extract hydrogen from water with no extra energy and at room temperature. Since the reaction of creating aluminum oxide and releasing hydrogen with gallium is pretty well-known, it appears the real research here is determining the optimal properties of the aluminum and the ratio of aluminum to gallium.

While gallium isn’t a common item around the typical hacker’s workshop — unless you count the stuff bound up in semiconductors — it isn’t that expensive and it is relatively easy to handle. Hydrogen, though, not so much — so if you do decide to use this method to produce hydrogen, be careful!

We’ve seen gallium robots and even an antenna. So if you do get some of the liquid metal, there are plenty of experiments to try.

Toyota’s Cartridge Helps Make Hydrogen Portable

Hydrogen has long been touted as the solution to cleaning up road transport. When used in fuel cells, the only emissions from its use are water, and it eliminates the slow recharging problem of battery-electric vehicles. It’s also been put forth as a replacement for everything from natural gas supplies to laptop batteries.

Toyota has been pushing hard for hydrogen technology, and has worked to develop vehicles and infrastructure to this end. The company’s latest efforts involve a toteable hydrogen cartridge – letting you take hydrogen power on the go!

Continue reading “Toyota’s Cartridge Helps Make Hydrogen Portable”

This Motorcycle Uses Water!

Doing the rounds among motorcycle enthusiasts for the last week has been a slightly unusual machine variously portrayed as running on water or sea water. This sounds like the stuff of the so-called “Free energy” fringe and definitely not the normal Hackaday fare, but it comes alongside pictures of a smiling teenager and what looks enough like a real motorcycle to have something behind it. So what’s going on? The answer is that it’s the student project of an Argentinian teenager [Santiago Herrera], and while it’s stretching it a bit to say it runs on sea water he’s certainly made a conventional motorcycle run on the oxygen-hydrogen mix produced from the electrolysis of water. The TikTok videos are in Spanish, but even for non-speakers it should be pretty clear what’s going on.

It’s obvious that the bike is more of a student demonstrator than a road machine, as we’re not so sure a glass jar is the safest of receptacles. But the interesting part for us lies not in the electrolysis but in the engine. it appears to be a fairly standard looking motorcycle engine, a typical small horizontal single. It’s running on a stoichiometric mix of oxygen and hydrogen, something that packs plenty of punch over a similar mix using air rather than oxygen. It would be fascinating to know the effect of this mixture on an engine designed for regular gasoline, for example does it achieve complete combustion, does it burn hotter than normal fuel, and does it put more stress on the engine parts?

You can see something of the bike in the video below the break, and there are a few more videos in his TikTok account. Meanwhile this isn’t the first teenage motorcycle project we’ve featured.

Continue reading “This Motorcycle Uses Water!”

Building A Lightsaber And Scoring A World Record, Too

As we all know, the lightsaber is an elegant weapon, for a more civilized age. [Alex Burkan] is doing what he can to bring that technology to fruition, and even secured a Guinness World Record in the process.

Melty melty.

The build relies on an electrolyzer, splitting water into hydrogen and oxygen gas which is stored in a small tank. This gas can then be released and combusted in a burning stream, creating a weapon with a vague resemblance to a movie-spec lightsaber. With the hydrogen torch burning at temperatures of thousands of degrees, it’s hot enough to melt steel just like in the films.

While the concept of operation is simple, actually building such a device in a handheld size is incredibly difficult. [Alex] highlights key features such as the flashback arrestor that stops the gas tank exploding, and the output nozzle that was carefully designed to produce a surprisingly long and stable flame.

The resulting device only burns for 30 seconds, so you’ve only got a short period of time to do what you need to do. However, unlike previous designs we’ve seen, it doesn’t use any external gas bottles and is entirely self-contained, marking an important step forward in this technology. Video after the break.

Continue reading “Building A Lightsaber And Scoring A World Record, Too”

Hydrogen Generation Made Easy

Even if you never want to generate hydrogen, [Maciej Nowak’s] video (embedded below) is interesting to watch because of the clever way the electrode is formed from stainless steel washers. You’ll need heat shrink tubing, but you ought to have that hanging around anyway. Building the electrode using the techniques in the video results in a lot of surface area which is important for an electrochemical reaction.

A standard rechargeable cell provides power for the generator which resides in a modified plastic bottle. The overall build looks good even though it is all repurposed material.

Continue reading “Hydrogen Generation Made Easy”

Mr Fusion powering a vehicle

Motorsports Are Turning To Alternative Fuels

As the world grapples with the issue of climate change, there’s a huge pressure to move transport away from carbon-based fuels across the board. Whether it’s turning to electric cars for commuting or improving the efficiency of the trucking industry, there’s much work to be done.

It’s a drop in the ocean in comparison, but the world of motorsports has not escaped attention when it comes to cleaning up its act. As a result, many motorsports are beginning to explore the use of alternative fuels in order to reduce their impact on the environment.

Continue reading “Motorsports Are Turning To Alternative Fuels”

Making Coffee With Hydrogen

Something of a Holy Grail among engineers with an interest in a low-carbon future is the idea of replacing fossil fuel gasses with hydrogen. There are various schemes, but they all suffer from the problem that hydrogen is difficult stuff to store or transport. It’s not easily liquefied, and the tiny size of its molecule means that many containment materials that are fine for methane simply won’t hold on to it.

[Isographer] has an idea: to transport the energy not as hydrogen but as metallic aluminium, and generate hydrogen by reaction with aqueous sodium hydroxide. He’s demonstrated it by generating enough hydrogen to make a cup of coffee, as you can see in the video below the break.

It’s obviously very successful, but how does it stack up from a green perspective? The feedstocks are aluminium and sodium hydroxide, and aside from the hydrogen it produces sodium aluminate. Aluminium is produced by electrolysis of molten bauxite and uses vast amounts of energy to produce, but since it is often most economic to do so using hydroelectric power then it can be a zero-carbon store of energy. Sodium hydroxide is also produced by an electrolytic process, this time using brine as the feedstock, so it also has the potential to be produced with low-carbon electricity. Meanwhile the sodium aluminate solution is a cisutic base, but one that readily degrades to inert aluminium oxide and hydroxide in the environment. So while it can’t be guaranteed that the feedstock he’s using is low-carbon, it’s certainly a possibility.

So given scrap aluminium and an assortment of jars it’s possible to make a cup of hot coffee. It’s pretty obvious that this technology won’t be used in the home in this way, but does that make it useless? It’s not difficult to imagine energy being transported over distances as heavy-but-harmless aluminium metal, and we’re already seeing a different chemistry with the same goal being used to power vehicles.

Continue reading “Making Coffee With Hydrogen”