A Hydroelectric Dam, Built Out Of LEGO

Hydroelectric dams are usually major infrastructure projects that costs tens of millions of dollars to construct. But they don’t have to be — you can build your own at home, using LEGO, as [Build it with Bricks] demonstrates!

The build is set up in an aquarium with a pump, which serves to simulate flow through a river system. The LEGO dam is installed in the middle of the aquarium, blocking the flow. It has a sluice gate in the lower section to feed water to a turbine for power generation. The gate is moved via a rack and pinion. It’s driven by a LEGO motor on a long shaft to keep it a safe distance from the wet stuff. The dam also gets a spillway to allow for overflow to be handled elegantly. Meanwhile, a second motor acts as a generator, fitted with a fairly basic turbine.

Hilariously, the first build fails spectacularly as the hydrostatic pressure of the water destroys the LEGO wall. A wider base and some reinforcements help solve the problem. There’s a better turbine, too.  It’s all pretty leaky, but LEGO was never designed to be water tight. As you might imagine, it doesn’t generate a lot of power, but it’s enough to just barely light some LEDs.

It’s a fun way to learn about hydroelectric power, even if it’s not making major amounts of electricity. Video after the break.

Continue reading “A Hydroelectric Dam, Built Out Of LEGO”

The Giant LEGO You Always Wanted To Play With

The interlocking LEGO bricks are probably one of the most versatile toys to come out of the 20th century, but aside from the Duplo larger-sized version for smaller kids, they don’t come in what you might term grown-up sizes. This has not deterred [Veranda Vikings] though, who have come up with the fantastic idea of giant LEGO bricks made from snow.

Making them is simplicity itself given enough depth of the white stuff, simply press the lid of one of those plastic LEGO storage bins into some fresh snowfall hard enough to compact  your brick, and then lift clear a perfect icy 2 by 2 brick. Most of the post is devoted to the building escapades of some very happy kids, and we can’t help envying them the opportunity. It appears that like the LEGO fries in the cafe at Legoland in Bilund, these bricks don’t quite interlock. We think that it would be possible to press the LEGO storage lid into the bottom of them though, perhaps some readers would like to experiment.

Either way, this is a hack to warm the hearts of readers worldwide, whether they live in a country with snow or not. We’re surprised Lego themselves haven’t caught on to the idea, and sold giant snow-brick moulds.

Illustrated Kristina with an IBM Model M keyboard floating between her hands.

Keebin’ With Kristina: The One With All The LEGO

It seems like mechanical keyboard enthusiasts are more spoiled for choice with each passing day. But as broad as the open source pool has become, there’s still no perfect keyboard for everyone. So, as people innovate toward their own personal endgame peripherals and make them open source, the pool just grows and grows.

Image by [Bo Yao] via Hackaday.IO
This beautiful addition to the glittering pool — [Bo Yao]’s Carpenter Tau keyboard — is meant to provide an elegant option at a particular intersection where no keyboards currently exist — the holy trinity of open source, programmable, and tri-mode connectivity: wired, Bluetooth, and 2.4 GHz.

Come for the lovely wooden everything, and stay for the in-depth logs as [Bo Yao] introduces the project and its roots, reviews various options for the controller, discusses the manufacture of the wooden parts, and creates the schematic for the 61-key version. Don’t want to build one yourself? It’ll be on Crowd Supply soon enough.

Continue reading “Keebin’ With Kristina: The One With All The LEGO”

A hand holds a LEGO replica of a Polaroid camera. The back of the "camera" has been removed to show the sereies of Technic pieces inside that allow the camera shutter to work.

How A LEGO Set Is Born

LEGOs are the first window into making something in your head become real for many makers. The Verge dug into how a LEGO set itself goes from idea to the shelves.

While most sets come from the minds of LEGO designers, since 2008, fans can submit their own sets to LEGO Ideas for the chance to become a real product. In this case, we follow the journey of [Marc Corfmat]’s Polaroid OneStep Camera from his initial attempts at LEGO stardom with his brother [Nick] to the current set that took off.

While the initial idea and build are the seed for a new set, once the project is in the hands of LEGO, designers meticulously make revision after revision to ensure the set is enjoyable to build and any moving parts continue to function for thousands of cycles. This is all weighed against the total cost of the BOM as well as any licensing required for intellectual property. One particularly interesting part of the article is how designers at LEGO are afforded a certain number of “frames” for custom bricks which leads to some interesting hacks and collaboration as all good constraints do.

For more LEGO hacks, checkout LEGO’s long lost cousin, testing LEGO-compatible axle materials, or these giant LEGO-like pieces.

Testing Various Properties Of LEGO-Compatible Axles

If you ever wondered what’d happen if you were to use LEGO Technic parts, but they were made out of something other than plastic, the [Brick Experiment Channel] has got you covered. Pitting original Lego axles against their (all except steel commercially available) equivalents made out of carbon fiber, aluminium and steel, some of the (destructive) results are very much expected, while some are more surprising.

Lego-compatible axle test results. (Credit: Brick Experiment Channel, YouTube)

Starting off with the torque test, each type of axle is connected with others and rotated with increasing torque until something gives out. Unsurprisingly, the plastic Technic part fails first and renders itself into a twist, before the carbon fiber version gives up. Aluminium is softer than steel, so ultimately the latter wins, but not before a range of upgrades to the (LEGO-based) testing rig, as these much stronger axles require also strong gears and the like to up the torque.

When it comes to durability, all except the original LEGO version didn’t mind having plastic rubbing against them for a while. Yet for friction in general, the plastic version did better, with less friction. Whether or not this is due to material wearing away is a bit of a question. Overall, stainless steel gets you a lot of strength, but in a dense (8000 kg/m3) package, aluminium comes somewhat close, with 2700 kg/m3, and carbon fiber (1500 kg/m3) does better than the original part (1400 kg/m3), with only a bit more weight, though at roughly ten times the cost.

On that note, we’re looking forward to the first 100% stainless steel LEGO Technic kit, reminiscent of the era when Meccano came in the form of all-metal components and a bucket of bolts.

Continue reading “Testing Various Properties Of LEGO-Compatible Axles”

Building A Hydraulic Lego Excavator Using Standard Pneumatic Cylinders

Everyone already knows that Lego Technic is pretty rad when it comes to existing, pre-made kits, but there’s also quite a bit of hacking potential left. One such area is the lack of hydraulics in Lego Technic, an egregious oversight that [Brick Technology] simply had to correct. His effort results in a partially hydraulic, fully remote-controlled excavator. Rather than a traditional gear hydraulic pump as you’d expect in a real-life excavator, a custom peristaltic pump is used to move the fluid to the hydraulic cylinders (rams for our British and Oceanic friends).

The undercarriage is (sadly) purely electrical, with a slip-ring providing power to the electric final drives in the tracks, enabling it to spin around endlessly without limitations. Where the hydraulics come into play is in the excavator’s arm, with two hydraulic lift cylinders on the boom, one cylinder to control the stick, and a final cylinder to control the bucket. Rather than a hydraulic switch, the setup is simplified by using a single peristaltic pump per cylinder circuit.

Remote control and power are provided using the rather chonky BuWizz 3.0 Pro, which offers a wireless control link (here controlled using BrickController 2 on Android). Although original Lego cylinders were used, these are only intended for pneumatics, where it’s hoped that the used mixture of water and windscreen wiper fluid will prevent corrosion.

(Thanks to [Keith Olson] for the tip)

Continue reading “Building A Hydraulic Lego Excavator Using Standard Pneumatic Cylinders”

What Does It Take For A LEGO Car To Roll Downhill Forever?

Cars (including LEGO ones) will roll downhill. In theory if the hill were a treadmill, the car could roll forever. In practice, there are a lot of things waiting to go wrong to keep this from happening. If you’ve ever wondered what those problems would be and what a solution would look like, [Brick Technology] has a nine-minute video showing the whole journey.

The video showcases an iterative process of testing, surfacing a problem, redesigning to address that problem, and then back to testing. It starts off pretty innocently with increasing wheel friction and adding weight, but we’ll tell you right now it goes in some unexpected directions that show off [Brick Technology]’s skill and confidence when it comes to LEGO assemblies.

You can watch the whole thing unfold in the video, embedded below. It’s fun to see how the different builds perform, and we can’t help but think that the icing on the cake would be LEGO bricks with OLED screens and working instrumentation built into them.

Continue reading “What Does It Take For A LEGO Car To Roll Downhill Forever?”