Using The Moiré Effect For Unique Clock Face

If you’ve ever seen artifacts on a digital picture of a computer monitor, or noticed an unsettling shifting pattern on a TV displaying someone’s clothes which have stripes, you’ve seen what’s called a Moiré pattern where slight differences in striping of two layers create an emergent pattern. They’re not always minor annoyances though; in fact they can be put to use in all kinds of areas from art to anti-counterfeiting measures. [Moritz] decided to put a few together to build one of the more unique clock displays we’ve seen.

The clock itself is made of four separate Moiré patterns. The first displays the hours with a stretching pattern, the second and third display the minutes with a circular pattern, and the seconds are displayed with a a spiral type. The “hands” for the clock are 3D printed with being driven by separate stepper motors with hall effect sensors for calibration so that the precise orientation of the patterns can be made. A pair of Arduinos control the clock with the high-accuracy DS3231 module keeping track of time, and [Moritz] built a light box to house the electronics and provide diffuse illumination to the display.

Moiré patterns can be used for a number of other interesting use cases we’ve seen throughout the years as well. A while back we saw one that helps ships navigate without active animations or moving parts and on a much smaller scale they can also be used for extremely precise calipers.

Continue reading “Using The Moiré Effect For Unique Clock Face”

3D-Printed Moiré Illusion May Just Drive You Crazy

Moiré illusions can be visually captivating, particularly when a little rotational motion is thrown in the mix. [Dushyant Ahuja] was a fan of these moving Moiré sculptures he’d seen around the place, and decided to create his own.

The build is based around spinning two spoked discs in opposite directions, such that the spokes create moving Moiré patterns as they turn. To achieve this, the discs were 3D printed, along with a central housing containing two 12 volt gear motors. 3D printed gears are used to allow both discs to rotate about the same axis. Nominally, the motors spin relatively slowly, generating a pleasing, hypnotic effect when turning the discs.

The drivetrain is under the control of an ESP8266, though [Dushyant] notes that to get the basic effect, one need only connect the motors to a 12 volt power supply and let them run. However, future plans involve adding some LEDs for bling, and varying the motor speed to create yet more complex effects. With the microcontroller already installed, upgrades should be a cinch.

Moiré effects are good for everything from guiding ships to taking precision measurements. If you’ve found a new application for these confounding line patterns, be sure to let us know! Video after the break.

Continue reading “3D-Printed Moiré Illusion May Just Drive You Crazy”

Building A Spinning Moiré Effect Lamp

A concise, comical explanation of Moiré patterns, via XKCD.

Moiré patterns are interference patterns created when grids of different size or alignment are placed over each other. You’ve probably seen these when photographing a TV screen or looking through a pair of windows screens at the same time. [ChrysN] put the effect to work with this spinning Moiré lamp build.

It’s a build that can be achieved with scrap-bin components. An LED-encrusted PC cooling fan is used as the base of the lamp, fitted with Sugru bumpers to hold a cheap glass vase. A line pattern is then printed on to paper, rolled into a cylinder, and slid on to the fan to spin with the blades, inside the vase. Another line pattern is then printed on to a transparency (a printable transparent sheet for those who don’t remember overhead projectors) and slid around the outside of the vase. When powered up, the LEDs glow, and the fan spins, creating a hypnotizing moving moiré pattern.

It’s a simple but visually captivating build, and one that should keep you up at night thanks to the blue LEDs. Moiré patterns can do so much more though – they’re even put to work guiding ships. Video after the break.

Continue reading “Building A Spinning Moiré Effect Lamp”

Moiré marine navigation light

Using Moiré Patterns To Guide Ships

Moiré screens for arrows
Moiré screens for arrows

[Tom Scott] ran across an interesting visual effect created with Moiré patterns and used for guiding ships but we’re sure it can be adapted for hacks somewhere. Without the aid of any motors or LED animation, the image changes as the user views it from different angles. When viewed straight on, the user sees vertical lines, but from the left they see a right-pointing arrow and from the right, they see a left-pointing arrow. It’s used with shipping to guide ships. For example, one use would be to guide them to the center point of a bridge. When the pilots see straight, vertical lines then they know where to steer the ship.

US patent 4,629,325, Leading mark indicator, explains how it works and how to make one. Two screens are separated from each other. The one in front is vertical but the one behind is split in two and angled. It’s this angle which creates the slants of the arrows when viewed from the left or right. We had to convince ourselves that we understood it correctly and a quick test with two combs showed that we did. See below for the test in action as well as for [Tom’s] video of the real-world shipping one.

Continue reading “Using Moiré Patterns To Guide Ships”

Precision DIY Calipers? That’s A Moiré!

Moiré patterns are a thing of art, physics, and now tool design! [Julldozer] from Mojoptix creatively uses a moiré pattern to achieve a 0.05 mm precision goal for his custom designed 3D printed calipers. His calipers are designed to validate a 3D print against the original 3D model. When choosing which calipers are best for a job, he points out two critical features to measure them up against, accuracy and precision which he explains the definition of in his informative video. The accuracy and precision values he sets as constraints for his own design are 0.5 mm and 0.05 mm respectively.

By experimenting with different parameters of a moiré pattern: the scale of one pattern in relation to the other, the distance of the black lines on both images, and the thickness of black and white lines. [Julldozer] discovers that the latter is the best way to amplify and translate a small linear movement to a standout visual for measurement. Using a Python script which he makes available, he generates images for the moiré pattern by increasing line thickness ratios 50:50 to 95:5, black to white creating triangular moiré fringes that point to 1/100th of a millimeter. The centimeter and millimeter measurements are indicated by a traditional ruler layout.

Looking for more tool hacks and builds? Check out how to prolong the battery life of a pair of digital calipers and how to build a tiny hot wire foam cutter.

 

Continue reading “Precision DIY Calipers? That’s A Moiré!”