Floating On The Breeze With A Full Size RC Paraglider

For many people the gateway drug to aviation is radio-controlled aircraft, and in [Andre Bandarra]’s case this led to paragliding. Now he has combined the two, turning his full size paragliding wing into an RC aircraft. (Video, embedded below.)

The primary controls of a paraglider are very simple, consisting of two brake lines that connect to the trailing edge of the wing. When a line is pulled, it increased drag on that side of the wing, causing it to turn. [Andre] connected the brake lines to two 3D-printed spools, which are each powered by a large RC servo that he modified for continuous rotation. These are mounted on a slim wooden frame that also holds the battery, RC receiver, an old electronic speed control to step down the battery power, and attachment straps for the wing. Without enough mass, the wing would just get blown around by the lightest of breezes, so [Andre] hooked a cloth bag filled with sand to the frame to act as a counter weight.

On the first test flight the wind was too strong and the sandbag too light, making it impossible to control. The hardest part of the flight is the launch, which requires the help of someone who knows how to fly a paraglider. The second test day had much better success. With only a slight breeze and a heavier sandbag, the contraption flew beautifully, floating slowly across the beach. He admits that there are a number of improvements he can make, but as a proof of concept using parts he had lying around, it was a roaring success.

For paragliding from flat ground, you can always strap a motor to your back, like the open source OpenPPG electric paramotor. For more crazy RC flying contraptions, also keep an eye on guys at [Flite Test].

Continue reading “Floating On The Breeze With A Full Size RC Paraglider”

E-reader Becomes Sailplane And Paraglider Computer

sail [Tweepy] flies unpowered aircraft, and he’d like to use the XCSoar flight computer app for gliders, sailplanes, and paragliders, but couldn’t find any hardware. XCSoar is an amazing app that can keep track of terrain, route, thermals, and a whole bunch of other variables that make flying more enjoyable, but running it on a device useful for a hang glider pilot is a challenge.

He eventually found a nearly perfect device in the Kobo mini e-reader. It’s e-ink, so it’s sunlight readable, uses a glove-compatible resistive touchscreen, runs Android, and is dirt cheap. The only thing lacking was a GPS receiver. What was [Tweepy] to do? Mod an e-reader, of course.

The electronic portion of the mod was simple enough; serial GPS units can be found just about everywhere, and the Kobo has a serial headers on the board. The case, however, required a bit of thingiverseing, and the completed case mod looks fairly professional.

With a few software updates, new maps, and of course the phenomenal XCSoar app, [Tweepy] had an awesome flight computer for under 100 Euro. The only thing missing is an integrated variometer, but a Game Boy will work in a pinch.

DIY Cell Phone Alti-variometer

AltiVarioFront

[Vlad-Andre] used some of his free time to build an alti-variometer. He does some para-gliding near restricted air space and wanted a backup altitude warning that would help keep him below the mandated altitude. His solution uses the SparkFun Weather Board in conjunction with their BlueSMiRF dongle to measure altitude and transmit it via Bluetooth. From there, he wrote a program to grab the transmitted data with his cell phone and display the information. His application also has the ability to set altitude warnings and log changes over time.

Using this system he is able to get altitude data with 3.5 inch accuracy. Because the capture application is written in Java it should be easy enough to make this work on other cell phone models. The project is clean and works well but we estimate the cost of the parts to be between $250-300, making it out of reach for those who don’t have a specific need for these types of measurements. This is especially true for paragliders who have much less expensive options available to them.
[Thanks Carl-Emil]