Macetech Is Looking For A Few Good Processing Programmers

maker_faire_logo

[Garrett Mace] wrote to us in hopes of finding a few good programmers to help him out with a project he’s been working on for Maker Faire Bay Area 2011.

More specifically, he is looking for Processing programmers who are also pretty decent with graphics. Macetech’s big project for this year’s Maker Faire is a large overhead light matrix constructed from Chinese lanterns. They are using their new Satellite LED modules to light the 128-lantern array, which is laid out in a 16×8 matrix.

It seems that the Macetech crew has been so busy getting the array built and tested that they don’t have much time to program any visualizations for it – that’s where you come in. If you are so inclined, simply download his matrix simulation code, put together some cool displays, and send them his way. [Garrett] says that they will be taking video of the visualizations, so even if you can’t attend Maker Faire, we will all be able to enjoy your hard work (though it would be pretty cool if they sent contributors a Satellite LED module “sample” as well!)

Keep reading to see a quick demo video of the simulation software to get an idea of what they are looking for visualization-wise.

Continue reading “Macetech Is Looking For A Few Good Processing Programmers”

3D Render Live With Kinect And Bubble Boy

[Mike Newell] dropped us a line about his latest project, Bubble boy! Which uses the Kinect point cloud functionality to render polygonal meshes in real time.  In the video [Mike] goes through the entire process from installing the libraries to grabbing code off of his site. Currently the rendering looks like a clump of dough (nightmarishly clawing at us with its nubby arms).

[Mike] is looking for suggestions on more efficient mesh and point cloud code, as he is unable to run any higher resolution than what is in the video. You can hear his computer fan spool up after just a few moments rendering! Anyone good with point clouds?

Also, check out his video after the jump.

Continue reading “3D Render Live With Kinect And Bubble Boy”

Using TouchOSC With Your Projects

[Marcus] wrote a guide to using TouchOSC to control your projects. He sent a link to us after reading our feature about using Open Sound Control for Arduino without an Ethernet shield. He’s been using that method for quite some time now, but takes it one step further by using a smartphone as a control device. He designs his own user interface for the iPhone using TouchOSC. This is a package which we’ve seen in other projects but now you can get an idea of how easy it really is.

The project starts by interfacing an Arduino with the device you’d like to control. The circuit above patches into a remote control using a couple of transistors. Now the Arduino can simulate button presses on that remote, sending the signal to turn a light on or off. Next, TouchOSC is used for the smartphone – here it’s an iPhone but the suite works on Android as well. In the video after the break you can watch a quick interface design demo. Buttons are dragged into existence, uploaded to the phone, then configured to control you device over a network. A Processing sketch listens for OSC commands and then sends instructions to the Arduino via USB.

Continue reading “Using TouchOSC With Your Projects”

Arduino And Open Sound Control Without An Ethernet Shield

Open Sound Control (OSC) is a communications protocol that can be seen as a modern alternative to MIDI. It’s specifically designed to play nicely with network communication systems. The problem with using it along with Arduino-based gadgets is that you then need to use something like an Ethernet shield to provide the network connection. [Liam Lacey] decided to use Processing as a go-between for OSC and the Arduino in lieu of the Ethernet Shield. One of the major benefits of this method is that it gives you some flexibility when it comes to how the Arduino communicates. Since a USB connected Arduino can be addressed by the Processing sketch in the same way as an AVR chip connected via an RS232 serial port, [Liam’s] method will allow you to prototype on an Arduino board, but transition to your own non-USB hardware for the finished project. The one big drawback to this method is the need to have a computer connected to your controller, but we’d bet you’d need one to run MAXmsp anyway.

SudoGlove Gets A Big Software Upgrade

[Jeremy Blum] recently finished writing a couple of software packages for his SudoGlove system that turns it into a music controller with a lot of features. We’ve seen the hardware in a previous post and as a goal for this iteration he decided not to alter the hardware or the firmware controlling it whatsoever–making this a PC-side software only hack. It’s nice to see improvement on the original ideas as we feel most of the glove-based projects we’ve covered end up getting thrown in the junk box after the developer’s interest wanes.

After the break you can see and hear a demonstration of the complete system. The front end of application shown was written using Processing and includes a slew of user configurations for each sensor on the glove itself. Under the hood [Jeremy] built on the PureData framework in order to really unlock the potential for translating physical movement into synthesized sound. There is also a visual feedback application which will help you practice your movements, important if you’re giving live performances where each finger is a different instrument. Everything for this project, both hardware and software, has been released under a CC license so check out [Jeremy’s] site if you’re interested in building on part or all of the good work he’s done.

Update: [Jeremy] wrote in with a bit of a correction for our synopsis. The application shown in the video is written entirely in PureData and the visual debugger was written with Processing. The two are standalone packages that don’t depend on each other. He also sent us a link to download the code packages.

Continue reading “SudoGlove Gets A Big Software Upgrade”

Building A Zoetrope Using Kinect, Processing, And A Laser Cutter

A zoetrope is a device that contains a disk full with a series of images that make up and animation. A couple of different methods can be used to trick the eye into seeing a single animated image. In the past this was done by placing the images inside of a cylinder with slits at regular distances. When spun quickly, the slits appear to be stationary, with the images creating the animation. But the same effect can be accomplished using a strobe light.

The disk you see above uses the strobe method, but it’s design and construction is what caught our eye. The animated shapes were captured with a Kinect and isolated using Processing. [Greg Borenstein] takes a depth movie recorded while someone danced in front of a Kinect. He ran it through a Processing sketch and was able to isolate a set of slides that where then turned into the objects seen above using a laser cutter.

You can watch a video of this particular zoetrope after the break. But we’ve also embedded the Pixal 3D zoetrope clip which, although unrelated to this hack, is extremely interesting. Don’t have a laser cutter to try this out yourself? You could always build a zoetrope that uses a printed disk.

Continue reading “Building A Zoetrope Using Kinect, Processing, And A Laser Cutter”

Daft Punk Module – Just Add Table

This is just an 8×8 LED matrix, but the size and execution make it look marvelous. [Michu] built this module using foam board dividers to separate the cells, a foam board back to host the 64 RGB LEDs, and a sheet of heavy frost diffusion gel that is a stage lighting product. The display is driven by a Rainbowduino with input from a processing sketch. The effects seen in the video after the break are quite pleasing, and are just begging to be installed in your next coffee table project.

Continue reading “Daft Punk Module – Just Add Table”