Frankenquad Takes To The Air

Modern quadcopter flight controllers perform a delicate dance of balancing pitch, yaw, bank, and throttle. They can do this thanks to modern MEMS gyros and accelerometers. The job is easy when the motors, propellers and speed controllers are relatively well matched. But what if they’re not? That’s the questions [SkitzoFPV] set out to answer by building Frankenquad.  Frankenquad is a 250 sized FPV quadcopter with 4 different motors and 4 different propellers. The props are different sizes from different manufacturers, and even include a mix of 3 and 4 blade units. If all that wasn’t enough [SkitzoFPV] used 3 different electronic speed controller. Each speed controller has a micro running different firmware, meaning it will respond slightly differently to throttle inputs.

Keeping all this in check was [SkitzoFPV’s] branded version of the Raceflight Revolt R4 flight controller. The Revolt is powered by an STM32F4 series ARM microcontroller. Most of these controllers run variants of the cleanflight open source flight control software. The question was – would it be able to handle the unbalanced thrust and torque of 4 different power combinations?

The flight tests proved the answer was a resounding yes. The quad hovered easily. As the video shows [SkitzoFPV] went on to burn a few holes in the sky with it. Admittedly [SkitzoFPV] is a much better pilot than any of us. He did notice a bit of a bobble and a definite yaw toward the smaller propeller. Still, it’s rather amazing how easily a modern flight controller was able to turn a pile of junk-box components into a flying quadcopter. You can learn more about flight controllers right here.

Continue reading “Frankenquad Takes To The Air”

The World’s Lightest Brushless FPV Quadcopter

When a claim is made for something being the world’s lightest it is easy to scoff, after all that’s a bold assertion to make. It hasn’t stopped [fishpepper] though, who claims to have made the world’s lightest brushless FPV quadcopter. Weighing in at 32.4 grams (1.143 oz) it’s certainly pretty light.

The frame is a circular design cut from carbon-fiber-reinforced polymer, and on it are mounted four tiny brushless motors. In the center are the camera and battery on a 3D printed mount, as well as custom flight and speed controller boards. There are a series of posts detailing some of the design steps, and the result is certainly a capable aircraft for something so tiny. If you fancy experimenting with the design yourself, the files are available for download on the first page linked above.

There are two aspects to this build that make it interesting to us. First, the lightest in the world claim. We think someone will come along with something a bit lighter, and we can’t wait to see a lightest multirotor arms race. Good things come of technology races, which brings us to the second aspect. Governments are busy restricting the use of larger multirotors, to the extent that in some parts of the world all that will be available for non professionals will be sub-200g toy craft. Any project like this one which aims to push the boundaries of what is possible with smaller multirotors is thus extremely interesting, and we hope the community continue to innovate in this direction if only to make a mockery of any restrictions.

To get some idea of the sort of legislative measures we might be seeing, take a look at our coverage of a consultation in just one country.

Lighthouse Locates Drone; Achieves Autonomous Battery Swap

The HTC Vive’s Lighthouse localization system is one of the cleverest things we’ve seen in a while. It uses a synchronization flash followed by a swept beam to tell any device that can see the lights exactly where it is in space. Of course, the device has to understand the signals to figure it out.

[Alex Shtuchkin] built a very well documented device that can use these signals to localize itself in your room. For now, the Lighthouse stations are still fairly expensive, but the per-device hardware requirements are quite reasonable. [Alex] has the costs down around ten dollars plus the cost of a microcontroller if your project doesn’t already include one. Indeed, his proof-of-concept is basically a breadboard, three photodiodes, op-amps, and some code.

His demo is awesome! Check it out in the video below. He uses it to teach a quadcopter to land itself back on a charging platform, and it’s able to get there with what looks like a few centimeters of play in any direction — more than good enough to land in the 3D-printed plastic landing thingy. That fixture has a rotating drum that swaps out the battery automatically, readying the drone for another flight.

If this is just the tip of the iceberg of upcoming Lighthouse hacks, we can’t wait!

Continue reading “Lighthouse Locates Drone; Achieves Autonomous Battery Swap”

Anti-Drone Fence: Science Or Snakeoil?

Remember when it was laser pointers? Well, now it’s drones.

[Thinkerer] sent us this link to what’s essentially a press release for a company called Sensofusion that makes a UAV detector and (they claim) smart jammer, and apparently one is being installed at Denver International airport.

We buy that the “Airfence” system will be able to detect known systems by signature, and possibly even take them over. We’ve seen two exploits of quadcopter radio protocols (one a timing attack and the other a controller ID spoof) that would allow them to do just that. But is that the problem? Don’t most of the major manufacturers fence off airports in software these days anyway? And are drones really the droids that you’re looking for?

They also make some claims about being able to detect and stop DIY copters, but we don’t see how. Imagine that your copter ran encrypted on 2.4 GHz. How is this different from any other WiFi signal? Or imagine that it sends and receives infrequent data in the congested pager bands? And short of jamming, we don’t see how they’re going to take down anything that they don’t already understand.

So, commenteers, how would you do it? Detect and even take over an arbitrary drone? Possible or snakeoil?

Helicopter Pendulum Is PID-licious

If you’ve ever tried to tune a PID system, you have probably encountered equal parts overwhelming math and black magic folk wisdom. Or maybe you just let the autotune take over. If you really want to get some good intuition for motion control algorithms, PID included, nothing beats a little hands-on experimentation.

To get you started, [Clovis] wrote in with his budget propeller-based PID demo platform (Portuguese, translated shockingly well here).

The basic setup is a potentiometer glued to a barbecue skewer with a mini-quadcopter motor and rotor on the end of it. A microcontroller reads the voltage and PWMs the propeller through a MOSFET. The goal is to have the pendulum hover stably in midair, controlled by whatever algorithms you can dream up on the controller. [Clovis]’ video demonstrates on-off and PID control of the fan. Adding a few more potentiometers (one for P, I, and D?) would make hands-on tweaking even more interactive.

In all, it’s a system that will only set you back a few bucks, but can teach you more than you’d learn in a month in college. Chances are good that you’re not going to have exactly the same brand of sardine can on hand that he did, but some improvisation is called for here.

If you don’t know why you’d like to master open-loop closed-loop control algorithms, here’s one of the best advertisements that we’ve seen in a long time. But you don’t have to start out with hand-wound hundred-dollar motors, or precisely machined bits. As [Clovis] demonstrates, you can make do with a busted quadcopter and whatever you find in your kitchen.

Continue reading “Helicopter Pendulum Is PID-licious”

Easy UFO Lights On Your Drone For Halloween

Sometimes it’s not so much what you put together, it’s how you use it. The folks at Adafruit have put up a project on how to dress up your drone with ‘UFO lights’ just in time for Halloween. The project is a ring of RGB LEDs and a small microcontroller to give any quadcopter a spinning ‘tractor beam light’ effect. A 3D printed fixture handles attachment. If you’re using a DJI Phantom 4 like they are, you can power everything directly from the drone using a short USB cable, which means hardly any wiring work at all, and no permanent changes of any kind to the aircraft. Otherwise, you’re on your own for providing power but that’s probably well within the capabilities of anyone who messes with add-ons to hobby aircraft.

One thing this project demonstrates is how far things have come with regards to accessibility of parts and tools. A 3D printed fixture, an off-the-shelf RGB LED ring, and a drop-in software library for a small microcontroller makes this an afternoon project. The video (embedded below) also demonstrates how some unfamiliar lights and some darkness goes a long way toward turning the otherwise familiar Phantom quadcopter into a literal Unidentified Flying Object.

Continue reading “Easy UFO Lights On Your Drone For Halloween”

Umbrella drone jellyfish

Umbrella Drones — Jellyfish Of The Sky

Mount an umbrella to a drone and there you go, you have a flying umbrella. When [Alan Kwan] tried to do just that he found it wasn’t quite so simple. The result, once he’d worked it out though, is haunting. You get an uneasy feeling like you’re underwater watching jellyfish floating around you.

A grad student in MIT’s ACT (Art, Culture and Technology) program, [Alan’s] idea was to produce a synesthesia-like result in the viewer by having an inanimate object, an umbrella, appear as an animate object, a floating jellyfish. He first tried simply attaching the umbrella to an off-the-shelf drone. Since electronics occupy the center of the drone, the umbrella had to be mounted off-center. But he discovered that drones want most of their mass in the center and so that didn’t work. With the help of a classmate and input from peers and faculty he made a new drone with carbon fiber and metal parts that allowed him to mount the umbrella in the center. To further help with stability, the batteries were attached to the very bottom of the umbrella’s pole.

In addition to just making them fly, [Alan] also wanted the umbrella to gently undulate like a jellyfish, slowly opening and closing a little. He tried mounting servo motors inside the umbrella for the task. These turned out to be too heavy, but also unnecessary. Once flying outside at just the right propeller speed, the umbrellas undulated on their own. Watch them doing this in the video below accompanied by haunting music that makes you feel you’re watching a scene from Blade Runner.

Continue reading “Umbrella Drones — Jellyfish Of The Sky”