Hype Robot Rocks Out With The Twitch Chat

Have you ever wished for an automaton that can get the party started, raise the roof, and all that? You’ll want to meet [DJ Pfeif]’s Flippin Rhobot, then. He’s a hype bot from the world of Twitch streaming, and he apparently knows how to party.

Flippin Rhobot is controlled by an ESP32 that listens into the chat on [DJ Pfeif]’s stream. He’s got a vaguely humanoid form, and he can rotate on the spot and wave his arms in the air courtesy of a few servos. He’s also got a little computer terminal that displays the show’s “Hack the Planet” logo when he turns to face the screen. His body also features some addressable LEDs that flash and dance on command.

[DJ Pfeif] does a good job of explaining the project, and includes the code that laces everything together. Interfacing with Twitch chat can be fun, and we’ve featured a guide on doing just that before, too.

If you’re building your own roboticized hype machine, don’t hesitate to let us know. Otherwise, consider musing on the very idea of humanoid robots as a whole!

Twelve pink tentacles are wrapped around a small, green succulent plant. The leaves seem relatively undisturbed. They are dangling from brass and white plastic pressure fittings attached to a brass circle.

Tentacle Robot Wants To Hold You Gently

Human hands are remarkable pieces of machinery, so it’s no wonder many robots are designed after their creators. The amount of computation required to properly attenuate the grip strength and position of a hand is no joke though, so what if you took a tentacular approach to grabbing things instead?

Inspired by ocean creatures, researchers found that by using a set of pneumatically-controlled tentacles, they could grasp irregular objects reliably and gently without having to faff about with machine learning or oodles of sensors. The tentacles can wrap around the object itself or intertwine with each other to encase parts of an object in its gentle grasp.

The basic component of the device is 12 sections “slender elastomeric filament” which dangle at gauge pressure, but begin to curl as pressure is applied up to 172 kPa. All of the 300 mm long segments run on the same pressure source and are the same size, but adding multiple sized filaments or pressure sources might be useful for certain applications.

We wonder how it would do feeding a fire or loading a LEGO train with candy? We also have covered how to build mechanical tentacles and soft robots, if that’s more your thing.

Continue reading “Tentacle Robot Wants To Hold You Gently”

Roboticized 3D Printer Has Been Developing Shock Absorbing Structures For Years

Imagine you want to iterate on a shock-absorbing structure design in plastic. You might design something in CAD, print it, then test it on a rig. You’ll then note down your measurements, and repeat the process again. But what if a robot could do all that instead, and do it for years on end? That’s precisely what’s been going on at Boston University.

Inside the College of Engineering, a robotic system has been working to optimize a shape to better absorb energy. The system first 3D prints a shape, and stores a record of its shape and size. The shape is then crushed with a small press while the system measures how much energy it took to compress. The crushed object is then discarded, and the robot iterates a new design and starts again.

The experiment has been going on for three years continuously at this point. The MAMA BEAR robot has tested over 25,000 3D prints, which now fill dozens of boxes. It’s not frivolous, either. According to engineer Keith Brown, the former record for a energy-absorbing structure was 71% efficiency. The robot developed a structure with 75% efficiency in January 2023, according to his research paper.

Who needs humans when the robots are doing the science on their own? Video after the break.

Continue reading “Roboticized 3D Printer Has Been Developing Shock Absorbing Structures For Years”

Almost Breaking The World Record For The Tiniest Humanoid Robot, But Not Quite

Did you know there is a Guinness World Record for the smallest humanoid robot? We didn’t either, but apparently this is a challenge attracting multiple competitors. [Lidor Shimoni] had a red hot go at claiming the record, but came up ever so slightly short. Or tall.

The former record holder was measured at 141 mm, so [Lidor] had to beat that. He set about building a humanoid robot 95 mm tall, relying on off-the-shelf parts and 3D-printed components of his own design. An ESP32 served as the brains of the operation, while the robot, named Tiny Titan, got big flat feet to make walking relatively stable and controlled. Small servos were stacked up to actuate the legs and create a suitably humanoid robot to claim the title.

Sadly, [Lidor] was pipped to the post. Some procrastinating in finishing the robot and documentation saw another rival with a 60mm robot take the record. It’s not 100% clear what Guinness requires for someone to take this record, but it seems to involve a robot with arms, legs, and some ability to walk.

Sometimes robots are more fun when they’re very small. If you’re developing your own record-breaking automatons, drop us a line won’t you?

Tabletop Handybot Is Handy, And Powered By AI

Decently useful AI has been around for a little while now, and robotic arms have been around much longer. Yet somehow, we don’t have little robot helpers on our desks yet! Thankfully, [Yifei] is working towards that reality with Tabletop Handybot.

What [Yifei] has developed is a robotic arm that accepts voice commands. The robot relies on a Realsense D435 RGB-D camera, which provides color vision with depth information as well. Grounding DINO is used for object detection on the RGB images. Segment Anything and Open3D are used for further processing of the visual and depth data to help the robot understand what it’s looking at. Meanwhile, voice commands are interpreted via OpenAI Whisper, which can feed prompts to ChatGPT for further processing.

[Yifei] demonstrates his robot picking up markers on command, which is a pretty cool demo. With so many modern AI tools available, we’re getting closer to the ideal of robots that can understand and execute on general spoken instructions. This is a great example. We may not be all the way there yet, but perhaps soon. Video after the break.

Continue reading “Tabletop Handybot Is Handy, And Powered By AI”

A thickness gauge, letter scale, push stick, and dial caliper

Measure Three Times, Design Once

Most of the Hackaday community would never wire a power supply to a circuit without knowing the expected voltage and the required current. But our mechanical design is often more bodged. We meet folks who carefully budget power to their microcontroller, sensors, and so on, but never measure the forces involved in their mechanical designs. Then they’re surprised when the motor they chose isn’t big enough for the weight of their robot.

An obstacle to being more numbers oriented is lack of basic data about the system. So, here are some simple tools for measuring dynamic properties of small mechanisms; distances, forces, velocities, accelerations, torques, and other things you haven’t thought about since college physics. If you don’t have these in your toolkit, how do you measure?

Continue reading “Measure Three Times, Design Once”

Robotic Platform Turns Shop Vac Into Roomba

The robotic revolution is currently happening, although for the time being it seems as though most of the robots are still being generally helpful to humanity, whether that help is on an assembly line, help growing food, or help transporting us from place to place. They’ve even showed up in our homes, although it’s not quite the Jetsons-like future yet as they mostly help do cleaning tasks. There are companies that will sell things like robotic vacuum cleaners but [Clay Builds] wanted one of his own so he converted a shop vac instead.

The shop vac sits in a laser-cut plywood frame and rolls on an axle powered by windshield wiper motors. Power is provided from a questionable e-bike battery which drives the motors and control electronics. A beefy inverter is also added to power the four horsepower vacuum cleaner motor. The robot has the ability to sense collisions with walls and other obstacles, and changes its path in a semi-random way in order to provide the most amount of cleaning coverage for whatever floor it happens to be rolling on.

There are a few things keeping this build from replacing anyone’s Roomba, though. Due to the less-than-reputable battery, [Clay Builds] doesn’t want to leave the robot unattended and this turned out to be a good practice when he found another part of the build, a set of power resistors meant to limit current going to the vacuum, starting to smoke and melt some of the project enclosure. We can always think of more dangerous tools to attach a robotic platform to, though.

Continue reading “Robotic Platform Turns Shop Vac Into Roomba”