Did ET Finally Call Us?

An Australian radio telescope picked up unusual signals back in 2019 and thinks they originated from Proxima Centauri, a scant 4.3 light years from our blue marble. Researchers caution that it almost certainly is a signal of human or natural origin and that more analysis will probably show it didn’t come from Proxima Centauri. But they can’t yet explain it.

The research is from the Breakthrough Listen project, a decade-long SETI project. The 980 MHz BLC-1 signal, as it’s called, meets the tests that identify the signal as interesting. It has a narrow bandwidth, it drifts in frequency consistent with a signal moving away or towards the Earth, and it disappears when the radio telescope points elsewhere.

Continue reading “Did ET Finally Call Us?”

The Wow! Signal And The Search For Extraterrestrial Intelligence

On a balmy August evening in 1977, an enormous radio telescope in a field in the middle of Ohio sat silently listening to the radio universe. Shortly after 10:00 PM, the Earth’s rotation slewed the telescope through a powerful radio signal whose passage was noted only by the slight change in tone in the song sung every twelve seconds by the line printer recording that evening’s data.

When the data was analyzed later, an astronomer’s marginal exclamation of the extraordinarily powerful by vanishingly brief blip would give the signal its forever name: the Wow! Signal. How we came to hear this signal, what it could possibly mean, and where it might have come from are all interesting details of an event that left a mystery in its wake, one that citizen scientists are now looking into with a fresh perspective. If it was sent from a region of space with habitable planets, it’s at least worth a listen.

Continue reading “The Wow! Signal And The Search For Extraterrestrial Intelligence”

Hackaday Links: November 22, 2020

Remember DSRC? If the initialism doesn’t ring a bell, don’t worry — Dedicated Short-Range Communications, a radio service intended to let cars in traffic talk to each other, never really caught on. Back in 1999, when the Federal Communications Commission set aside 75 MHz of spectrum in the 5.9-GHz band, it probably seemed like a good idea — after all, the flying cars of the future would surely need a way to communicate with each other. Only about 15,000 vehicles in the US have DSRC, and so the FCC decided to snatch back the whole 75-MHz slice and reallocate it. The lower 45 MHz will be tacked onto the existing unlicensed 5.8-GHz band where WiFi now lives, providing interesting opportunities in wireless networking. Fans of chatty cars need not fret, though — the upper 30 MHz block is being reallocated to a different Intelligent Transportation System Service called C-V2X, for Cellular Vehicle to Everything, which by its name alone is far cooler and therefore more likely to succeed.

NASA keeps dropping cool teasers of the Mars 2020 mission as the package containing the Perseverance rover hurtles across space on its way to a February rendezvous with the Red Planet. The latest: you can listen to the faint sounds the rover is making as it gets ready for its date with destiny. While we’ve heard sounds from Mars before — the InSight lander used its seismometer to record the Martian windPerseverance is the first Mars rover equipped with actual microphones. It’s pretty neat to hear the faint whirring of the rover’s thermal management system pump doing its thing in interplanetary space, and even cooler to think that we’ll soon hear what it sounds like to land on Mars.

Speaking of space, back at the beginning of 2020 — you know, a couple of million years ago — we kicked off the Hack Chat series by talking with Alberto Caballero about his “Habitable Exoplanets” project, a crowd-sourced search for “Earth 2.0”. We found it fascinating that amateur astronomers using off-the-shelf gear could detect the subtle signs of planets orbiting stars half a galaxy away. We’ve kept in touch with Alberto since then, and he recently tipped us off to his new SETI Project. Following the citizen-science model of the Habitable Exoplanets project, Alberto is looking to recruit amateur radio astronomers willing to turn their antennas in the direction of stars similar to the Sun, where it just might be possible for intelligent life to have formed. Check out the PDF summary of the project which includes the modest technical requirements for getting in on the SETI action.

Continue reading “Hackaday Links: November 22, 2020”

Farewell SETI@Home

It was about 21 years ago that Berkley started one of the first projects that would allow you to donate idle computing time to scientific research. In particular, your computer could help crunch data from radio telescopes looking for extraterrestrial life. Want to help? You may be too late. The project is going into hibernation while they focus on analyzing data already processed.

According to the home page:

We’re doing this for two reasons:

1) Scientifically, we’re at the point of diminishing returns; basically, we’ve analyzed all the data we need for now.

2) It’s a lot of work for us to manage the distributed processing of data. We need to focus on completing the back-end analysis of the results we already have, and writing this up in a scientific journal paper.

Continue reading “Farewell SETI@Home”

Hackaday Links: February 23, 2020

If you think your data rates suck, take pity on New Horizons. The space probe, which gave us lovely pictures of the hapless one-time planet Pluto after its 2015 flyby, continued to plunge and explore other, smaller objects in the Kuiper belt. In January of 2019, New Horizons zipped by Kuiper belt object Arrokoth and buffered its findings on the spacecraft’s solid-state data recorders. The probe has been dribbling data back to Earth ever since at the rate of 1 to 2 kilobits per second, and now we have enough of that data to piece together a story of how planets may have formed in the early solar system. The planetary science is fascinating, but for our money, getting a probe to narrowly miss a 35-kilometer long object at a range of 6.5 billion km all while traveling at 51,500 km/h is pretty impressive. And if as expected it takes until September to retrieve all the data from the event at a speed worse than dialup rates, it’ll be worth the wait.

Speaking of space, if you’re at all interested in big data, you might want to consider putting your skills to work in the search for extraterrestrial intelligence. The Berkeley SETI Research Center has been feeding data from the Green Bank Telescope and their Automated Planet Finder into the public archive of Breakthrough Listen, a 10-year, $100 million initiative to scan the million closest stars in our galaxy as well as the 100 nearest galaxies for signs of intelligent life. They’re asking for help to analyze the torrents of data they’re accumulating, specifically by developing software and algorithms to process the data. They’ve set up a site to walk you through the basics and get you started. If you’re handy with Python and have an interest in astronomy, you should check it out.

Staying with the space theme, what’s the best way to get kids interested in space and electronics? Why, by launching a satellite designed to meme its way across the heavens, of course. The Mission for Education and Multimedia Engagement satellite, or MEMESat-1, is being planned for a February 2021 launch. The 1U cubesat will serve as an amateur radio repeater and slow-scan TV (SSTV) beacon that will beam down memes donated to the project and stored on radiation-hardened flash storage. In all seriousness, this seems like a great way to engage the generation that elevated the meme to a modern art form in a STEM project they might otherwise show little interest in.

It looks as though Linux might be getting a big boost as the government of South Korea announced that they’re switching 3.3 million PCs from Windows to Linux. It’s tempting to blame Microsoft’s recent dropping of Windows 7 support for the defenestration, but this sounds like a plan that’s been in the works for a while. No official word on which distro will be selected for the 780 billion won ($655 million) effort, which is said to be driven by ballooning software license costs and a desire to get out from under Microsoft’s thumb.

And finally, in perhaps the ickiest auction ever held, the “Davos Collection” headed to the auction block this week in New York. The items offered were all collected from the 2018 World Economic Forum in Davos, Switzerland, where the world’s elites gather to determine the fate of the 99.999%. Every item in the collection, ranging from utensils and glassware used at the many lavish meals to “sanitary items” disposed of by the billionaires, and even hair and fluid samples swabbed from restrooms, potentially holds a genetic treasure trove in the form of the DNA it takes to be in the elite. Or at least that’s the theory. There’s a whole “Boys from Brazil” vibe here that we find disquieting, and we flatly refuse to see how an auction where a used paper cup is offered for $8,000 went, but if you’d like to virtually browse through the ostensibly valuable trash of oligarchs, check out the auction catalog.

Flagging Down Aliens With World’s Biggest Laser Pointer

As you’re no doubt aware, humans are a rather noisy species. Not just audibly, like in the case of somebody talking loudly when you’re in a movie theater, but also electromagnetically. All of our wireless transmissions since Marconi made his first spark gap broadcast in 1895 have radiated out into space, and anyone who’s got a sensitive enough ear pointed into our little corner of the Milky Way should have no trouble hearing us. Even if these extraterrestrial eavesdroppers wouldn’t be able to understand the content of our transmissions, the sheer volume of them would be enough to indicate that whatever is making all that noise on the third rock orbiting Sol can’t be a natural phenomena. In other words, one of the best ways to find intelligent life in the galaxy may just be to sit around and wait for them to hear us.

Of course, there’s some pesky physics involved that makes it a bit more complicated. Signals radiate from the Earth at the speed of light, which is like a brisk walk in interstellar terms. Depending on where these hypothetical listeners are located, the delay between when we broadcast something and when they receive it can be immense. For example, any intelligent beings that might be listening in on us from the closest known star, Proxima Centauri, are only just now being utterly disappointed by the finale for “How I Met Your Mother“. Comparatively, “Dallas” fans from Zeta Reticuli are still on the edge of their seats waiting to find out who shot J.R.

But rather than relying on our normal broadcasts to do the talking for us, a recent paper in The Astrophysical Journal makes the case that we should go one better. Written by James R. Clark and Kerri Cahoy,  “Optical Detection of Lasers with Near-term Technology at Interstellar Distances” makes the case that we could use current or near-term laser technology to broadcast a highly directional beacon to potentially life-harboring star systems. What’s more, it even theorizes it would be possible to establish direct communications with an alien intelligence simply by modulating the beam.

Continue reading “Flagging Down Aliens With World’s Biggest Laser Pointer”

AI Finds More Space Chatter

Scientists don’t know exactly what fast radio bursts (FRBs) are. What they do know is that they come from a long way away. In fact, one that occurs regularly comes from a galaxy 3 billion light years away. They could form from neutron stars or they could be extraterrestrials phoning home. The other thing is — thanks to machine learning — we now know about a lot more of them. You can see a video from Berkeley, below. and find more technical information, raw data, and [Danielle Futselaar’s] killer project graphic seen above from at their site.

The first FRB came to the attention of [Duncan Lorimer] and [David Narkevic] in 2007 while sifting through data from 2001. These broadband bursts are hard to identify since they last a matter of milliseconds. Researchers at Berkeley trained software using previously known FRBs. They then gave the software 5 hours of recordings of activity from one part of the sky and found 72 previously unknown FRBs.

Continue reading “AI Finds More Space Chatter”