DIY 6502 Laptop Computer Looks And Works Great

Over the years, we’ve seen a lot of DIY retro computers, but [Dirk Grappendorf] has created one of the most polished looking 6502 systems to date. His battery-powered portable machine utilizes a 4 line by 40 character LCD, and a modified USB keyboard. Cover all that in a slick 3D printed case, and you have a machine that reminds us quite a bit of the venerable TRS-80 Model 100.

homecomputer-6502-v8-via-bread[Dirk] has some great documentation to go with his computer. He started with a classic MOS 6502 processor. He surrounded the processor with a number of support chips correct for the early 80’s period. RAM is easy-to -use static RAM, while ROM is handled by UV erasable EPROM. A pair of MOS 6522 Versatile Interface Adapter (VIA) chips connect the keyboard, LCD, and any other peripherals to the CPU. Sound is of course provided by the 6581 SID chip.  All this made for a heck of a lot of wires when built up on a breadboard. The only thing missing from this build is a way to store software written on the machine. [Dirk] already is looking into ways to add an SD card interface to the machine.

homecomputer-6502-final-4The home building didn’t stop there though. [Dirk] designed and etched his own printed circuit board (PCB) for his computer. DIY PCBs with surface mount components are easy these days, but things are a heck of a lot harder with older through hole components. Every through hole pin and via had to be drilled, and soldered to the top and bottom layers of the board. Not to mention the fact that both layers had to line up perfectly to avoid missing holes! To say this was a lot of work would be an understatement.

homecomputer-6502-final-5[Dirk] designed a custom 3D printed case for his computer and printed it out on his Ultimaker. To make things fit, he created his design in halves, and glued the case once printing was complete.

If awesome hardware and a case weren’t enough, [Dirk] also spent time designing software for the machine. He wrote his own abbreviated BASIC interpreter along with several BASIC programs. You can find everything over on his GitHub repository.

We always love writing up well-documented, and just generally awesome projects like [Dirk’s]. If you know of any retro computers like this one, drop us a tip!

[Thanks MicroHex!]

Teensys And Old Synth Chips, Together At Last

The ancient computers of yesteryear had hardware that’s hard to conceive of today; who would want a synthesizer on a chip when every computer made in the last 15 years has enough horsepower to synthesize sounds in software and output everything with CD quality audio? [Brian Peters] loves these old synth chips and decided to make them all work with a modern microcontroller.

Every major sound chip from the 80s is included in this roundup. The Commodore SID is there with a chip that includes working filters. The SN76489, the sound chip from the TI99 and BBC Micro are there, as is the TIA from the Atari consoles. Also featured is the Atari POKEY, found in the 8-bit Atari computers. The POKEY isn’t as popular as the SID, but it should be.

[Brian] connected all these chips up with Teensy 2.0 microcontrollers, and with the right software, was able to control these via MIDI. It’s a great way to listen to chiptunes the way they’re meant to be heard. You can check out some sound samples in the videos below.

Thanks [Wybren] for the tip.

Continue reading “Teensys And Old Synth Chips, Together At Last”

MOS SID Chip

30 Years Later TED Finds His Voice: A Commodore Story Part I

MOS SID Chip
MOS SID Chip Sound Interface Device

In the before-time (I’m talking about the 1980’s here), when home computers were considered to be consumer items, there was the Commodore C64. The C64 derived its vast array of superpowers from two Integrated Circuits (IC) named VIC and SID standing for Video Interface Chip and Sound Interface Device. Chip names were part of our culture back them, from VIC up to Fat AGNES in the end.

We spoke about VIC and SID as if they were people or distant relatives, sometimes cantankerous or prone to sudden outburst, but there was always an underlying respect for the chips and the engineers who made them. VIC and SID together made one of the world’s best video and sound experiences; movement and noise, musical notes and aliens.

Continue reading “30 Years Later TED Finds His Voice: A Commodore Story Part I”

C64 MIDI And Flash Cart

KerberosThe SID chip inside the Commodore 64 and 128 is arguably still the gold standard for chip tunes, and the C64 itself still a decent computer for MIDI sequencing. [Frank Buss] realized most of the MIDI cartridges for the Commodore computers are either out of production or severely limited, so he set out to create his own.

Unlike the few Commodore MIDI cartridges that are available, [Frank]’s Kerberos has MIDI In, Out, and Thru, controlled by the 6850 ACIA chip, just like the old 80s interfaces. This allows the Kerberos to interface with the old Sequential Circuits, Passport, and Datel software. He’s offering the Kerberos cart up on a crowdfunding site, so if you’d like to grab your own, have at it.

Because the Kerberos is also a Flash cart, it also ships with some of this software; [Frank] got permission from Steinberg to install their Pro 16 software with the Kerberos.  SID Wizard is also pre-loaded on the cart, along with a few other fabulous trackers and sequencers. Of course, there’s no requirement for the Flash portion of the cart to only host MIDI and synth software. You can always upload a few games to the cart over a MIDI interface. Video of the Kerberos below.

Continue reading “C64 MIDI And Flash Cart”

Making A Commodore 64 Portable

making-a-c64-portable

This is [Wpqrek’s] Commodore 64 modified to go on the road with him. The elderly machine has a special place in his heart as it was what he learned to code on. He performed a series of hacks which house everything necessary to use the machine inside the original case.

Obviously the hack that has the most effect when it comes to portability was swapping a display for the small LCD mounted above the number keys. This was a pretty simple process because the screen, originally intended for a rear view camera in a vehicle, already had a composite video input. To emulate the floppy disc drive he’s using an SD card via an sd2iec board which he laid out himself. Rounding up the alterations is a stereo SID. The second channel uses the pre-amp circuit cut from a second C64. This audio hardware will let him do cool things like playing some classic Zeppelin.

You can get a video tour of these alterations after the break.

Continue reading “Making A Commodore 64 Portable”

Creating A MIDI Synth From A Commodore SID

The Commodore SID was the audio chip in the venerable Commodore 64 and in the 30 years since release has attained classic status and become one of the best ways to get your chiptune on. Designed by famous synthesizer designer [Bob Yannes], it was only a matter of time before we saw a real, homebrew MIDI synth based on the Commodore SID.

Because real SID chips are rare as hen’s teeth nowadays, [Jeff Ledger] built his SID synth around an emulated system running on a Pocket Mini Computer. This very cool microcontroller platform runs on the Parallax Propeller. An emulated SID runs in one of the Propeller’s 8 cores, with the remaining cores kept open for reading MIDI notes and displaying info on a display.

The hardware portion of this build is amazingly simple; just an optoisolater, a few resistors, and a diode connect a MIDI keyboard to the Pocket Mini Computer. The buttons and dials on [Jeff]’s MIDI keyboard control the waveforms, filters, and envelope controls. A very neat setup if we do say so ourselves, and just perfect if you’re needing more chiptunes in your life.

You can check out [Jeff]’s video after the break.

Continue reading “Creating A MIDI Synth From A Commodore SID”

Ask Hackaday: Who Likes Retrocomputing?

Last week we posted a link to Project Kiwi, a homebrew Motorola 68008-based microcomputer built by [Simon] that includes Ethernet, a very good display adapter, an interface for IDE hard disks, two Commodore SID chips (for stereo chiptunes), a floppy disk controller, and an already existent software library that will make it very easy to develop your own software for this wonderful computer.

After thinking about [Simon]’s Project Kiwi for a while, I’ve been thinking there really hasn’t been a homebrew computer made that is so perfect for a proper Open Hardware release. There are more than enough peripherals in the computer to make development very fun. I’ve suggested doing a group buy to get Kiwi PCBs out into the wild and into the hands of other retrocomputer fanatics, but [Simon] would like a little more feedback.

Of course, this means turning to you, the wonderful Hackaday reader. Would any of you be interested in your own Kiwi microcomputer?

[Simon] tells me there are a lot of problems for turning the Kiwi microcomputer into a Open Hardware project. His prototype PCB cost €300, greatly reducing the number of people who would be interested in making their own Kiwi. Also, there are a few problems on the current PCB design (easily fixed for the next revision), and [Simon] would like to add a few features like DMA and a proper framebuffer.

Despite all those problems, I can’t see a better way to learn about computer architecture the hard way (i.e. 80’s microcomputers as opposed to futzing around with a Raspberry Pi). You’ll also get a really wonderful computer system that will show the power of 80s-era electronics, with the very hopeful goal of spreading the gospel of retrocomputing with the venerable Saint MC68000.

If you’d like to add your two cents – if having an Open Hardware 80s microcomputer is a good idea, or some technical requests such as adding a proper 68000 CPU to future designs, leave a note in the comments or on the forum [Simon] set up on his Kiwi page.

I think it’s a cool idea, but then again I’m probably blinded by how cool an 80s computer of this caliber is. The fate of this project is now in your hands.