Illustrated Kristina with an IBM Model M keyboard floating between her hands.

Keebin’ With Kristina: The One With The 24-Hour Macro Pad

They say Rome wasn’t built in a day, but this great little music-controlling macro pad by [nibbler] actually was. Why? Because as Hackaday’s own [Donald Papp] reminded us, we all need a win sometimes, especially as projects drag on and on without any end in sight.

A small macro pad with six buttons.
Image by [nibbler] via Toxic Antidote
As [nibbler] points out, what really constitutes a win? Set the bar too low and it won’t feel like one at all. Too high, and you may become too discouraged to cross the finish line. With that in mind, [nibbler] set the bar differently, limiting themselves to what could be done in the one day per week they have to devote time to electronic matters.

One-day turnaround usually means using parts on hand and limiting oneself to already-learned skills and techniques. No problem for [nibbler], who, armed with an Arduino Leonardo Tiny and a some colorful push buttons, set about designing a suitable enclosure, and then putting it all together. Was this a win? [nibbler] says yes, and so do I.

Continue reading “Keebin’ With Kristina: The One With The 24-Hour Macro Pad”

The ring shown on someone's index finger

The ErgO Ring Makes Computer Interactions Comfortable

[Sophia Dai] brings us a project you will definitely like if you’re tired of traditional peripherals like a typical keyboard and mouse combo. This is ErgO, a smart ring you can build out of a few commonly available breakouts, and it keeps a large number of features within a finger’s reach. The project has got an IMU, a Pimoroni trackball, and a good few buttons to perform actions or switch modes, and it’s powered by a tiny Bluetooth-enabled devboard so it can seamlessly perform HID device duty.

While the hardware itself appears to be in a relatively early state, there’s no shortage of features, and the whole experience looks quite polished. Want to lay back in your chair yet keep scrolling the web, clicking through links as you go? This ring lets you do that, no need to hold your mouse anymore, and you can even use it while exercising. Want to do some quick text editing on the fly? That’s also available; the ErgO is designed to be used for day to day tasks, and the UX is thought out well. Want to use it with more than just your computer? There is a device switching feature. The build instructions are quite respectable, too – you can absolutely build one like this yourself, just get a few breakouts, a small battery, some 3D printed parts, and find an evening to solder them all together. All code is on GitHub, just like you would expect from a hack well done.

Looking for a different sort of ring? We’ve recently featured a hackable cheap smart ring usable for fitness tracking – this one is a product that’s still being reverse-engineered, but it’s alright if you’re okay with only having an accelerometer and a few optical sensors.

Continue reading “The ErgO Ring Makes Computer Interactions Comfortable”

A closeup of the ring, inner electronics including a lit green LED seen through the inner transparent epoxy, next to the official app used to light up the LED for a demo.

New Part Day: A Hackable Smart Ring

We’ve seen prolific firmware hacker [Aaron Christophel] tackle smart devices of all sorts, and he never fails to deliver. This time, he’s exploring a device that seems like it could have come from the pages of a Cyberpunk RPG manual — a shiny chrome Bluetooth Low Energy (BLE) smart ring that’s packed with sensors, is reasonably hacker friendly, and is currently selling for as little as $20.

The ring’s structure is simple — the outside is polished anodized metal, with the electronics and battery carefully laid out along the inside surface, complete with a magnetic charging port. It has a BLE-enabled MCU, a heartrate sensor, and an accelerometer. It’s not much, but you can do a lot with it, from the usual exercise and sleep tracking, to a tap-sensitive interface for anything you want to control from the palm of your hand. In the video’s comments, someone noted how a custom firmware for the ring could be used to detect seizures; a perfect example of how hacking such gadgets can bring someone a brighter future.

The ring manufacturer’s website provides firmware update images, and it turns out, you can upload your own firmware onto it over-the-air through BLE. There’s no signing, no encryption — this is a dream device for your purposes. Even better, the MCU is somewhat well-known. There’s an SDK, for a start, and a datasheet which describes all you would want to know, save for perhaps the tastiest features. It’s got 200 K of RAM, 512 K of flash, BLE library already in ROM, this ring gives you a lot to wield for how little space it all takes up. You can even get access to the chip’s Serial Wire Debug (SWD) pads, though you’ve got to scrape away some epoxy first.

As we’ve seen in the past, once [Aaron] starts hacking on these sort of devices, their popularity tends to skyrocket. We’d recommend ordering a couple now before sellers get wise and start raising prices. While we’ve seen hackers build their own smart rings before, it’s tricky business, and the end results usually have very limited capability. The potential for creating our own firmware for such an affordable and capable device is very exciting — watch this space!

Continue reading “New Part Day: A Hackable Smart Ring”

Detect COVID-19 Symptoms Using Wearable Device And AI

A new study from West Virginia University (WVU) Rockefeller Neuroscience Institute (RNI) uses a wearable device and artificial intelligence (AI) to predict COVID-19 up to 3 days before symptoms occur. The study has been an impressive undertaking involving over 1000 health care workers and frontline workers in hospitals across New York, Philadelphia, Nashville, and other critical COVID-19 hotspots.

The implementation of the digital health platform uses a custom smartphone application coupled with an Ōura smart ring to monitor biometric signals such as respiration and temperature. The platform also assesses psychological, cognitive, and behavioral data through surveys administered through a smartphone application.

We know that wearables tend to suffer from a lack of accuracy, particularly during activity. However, the Ōura ring appears to take measurements while the user is very still, especially during sleep. This presents an advantage as the accuracy of wearable devices greatly improves when the user isn’t moving. RNI noted that the Ōura ring has been the most accurate device they have tested.

Given some of the early warning signals for COVID-19 are fever and respiratory distress, it would make sense that a device able to measure respiration and temperature could be used as an early detector of COVID-19. In fact, we’ve seen a few wearable device companies attempt much of what RNI is doing as well as a few DIY attempts. RNI’s study has probably been the most thorough work released so far, but we’re sure that many more are upcoming.

The initial phase of the study was deployed among healthcare and frontline workers but is now open to the general public. Meanwhile the National Basketball Association (NBA) is coordinating its re-opening efforts using Ōura’s technology.

We hope to see more results emerge from RNI’s very important work. Until then, stay safe Hackaday.