Mithro Runs Down Open Source FPGA Toolchains

Tim [Mithro] Ansell has a lot to tell you about the current state of open FPGA tooling: 115 slides in 25 minutes if you’re counting. His SymbiFlow project aims to be the GCC of FPGA toolchains: cross-platform, multi-platform, completely free, and all-encompassing. That means that it’s an umbrella framework for all of the work that everyone else is doing, from work on synthesis and verification tools, to placing and routing, to vendor-specific chip libraries. His talk catches you up with the state of the art at the end of 2019, and it’s embedded below. Spoiler alert: SymbiFlow has the big Xilinx 7-series FPGAs in its crosshairs, and is closing in. SymbiFlow is that close to getting a networked Linux system on the FPGA fabric in a Xilinx 7 today, completely independent of any vendor tools.

But let’s step back a sec for a little background. When you code for an FPGA, words you type get turned into a bitstream of ones and zeroes that flip perhaps a few million switches inside the chip. Going from a higher-level language to a bitstream is a lot like compiling normal programming languages, except with the twist that the resulting computational logic doesn’t map straight into a machine language, but rather into lower-level physical hardware on the FPGA. So “compilation” for FPGAs involves two steps: synthesis and place-and-routing. Synthesis takes the higher-level language that you write and turns it into a set of networks and timing requirements that represent the same logic, and can work across chip families. Yosys is the open-source synthesis tool of choice here.

Continue reading “Mithro Runs Down Open Source FPGA Toolchains”

FBus: An Extensible And Easily Configurable FPGA Based DAQ

[flow] is a little disillusioned with commercial Data Acquisition Systems (DAQs) and channeled his frustration into his own, very cool, FPGA based solution.

The project takes form as a back plane into which various cards can be slotted. The the interface is just a PCI-e connector. If you need analog input, simply insert the card for it. Ethernet output? Same process. Modularity and expandability are the themes here.

[flow] already has projects in mind for his new DAQ. He’s using it to build an inverted pendulum. However, his planned cards really show the possibilities, anything from a logic analyzer card to an HDMI Output card allow for a wide array of configurations. There is also a small suite of tools which makes this process relatively easy to manage.

We can definitely see this evolving into a useful tool on our bench for prototyping.

Symbiflow Open Source FPGA Toolchain

Anyone who’s ever had the pleasure of programming FPGAs knows that it’s a land of proprietary tools that almost require marriage level commitment to a specific platform to be effective. Symbiflow hopes to solve this by becoming the GCC of FPGAs.

Rather than a tool built around a specific chip or architecture, Symbiflow will provide a more universal interface.  Users can program in Verilog; architecture definitions define how the code will be compiled for the right chip. They are currently targeting the popular Xilinx 7-series, the very affordable iCE40 series from lattice, and the ECP5 FPGAs also from Lattice.

If you’re headed to Hackaday Supercon this year, [Timothy Ansell] will be giving a talk on how Symbiflow is making this process much more approachable and much less proprietary.  Overall we’re very excited about a common interface, especially as the price of FPGAs keep dropping into micro controller territory while also increasing in capability.

(Speaking of Supercon, and maybe this is a spoiler, the badge would not have been possible without Symbiflow, Project Trellis, Yosys, and NextPNR.)