Poor Man’s Time Domain Reflectometer

A time domain reflectometer, or TDR, is an essential piece of test gear when working on long cables. The idea is simple: send a pulse down the cable and listen for the reflection from the far end. The catch is that pesky universal constant, the speed of light.

The reason the speed of light is an issue is that, in a traditional system, the pulse needs to be complete before the reflection. Also, time is resolution, so a 1 GHz sampling rate provides a resolution of about 10 centimeters. [Krampmeier] has a different design. He sends variable length pulses and measures the overlap between the outgoing and reflected pulses. The approach allows a much simpler design compared to the traditional method.

Continue reading “Poor Man’s Time Domain Reflectometer”

Find And Repair A 230kV 800Amp Oil-Filled Power Cable Feels Like Mission Impossible

How do you fix a shorted cable ? Not just any cable. An underground, 3-phase, 230kV, 800 amp per phase, 10 mile long one, carrying power from a power station to a distribution centre. It costs $13,000 per hour in downtime, counting 1989 money, and takes 8 months to fix. That’s almost $75 million. The Los Angeles Department of Water and Power did this fix about 26 years ago on the cable going from the Scattergood Steam Plant in El Segundo to a distribution center near Bundy and S.M. Blvd. [Jamie Zawinski] posted details on his blog in 2002. [Jamie] a.k.a [jwz] may be familiar to many as one of the founders of Netscape and Mozilla.

To begin with, you need Liquid Nitrogen. Lots of it. As in truckloads. The cable is 16 inch diameter co-axial, filled with 100,000 gallons of oil dielectric pressurised to 200 psi. You can’t drain out all the oil for lots of very good reasons – time and cost being on top of the list. That’s where the LN2 comes in. They dig holes on both sides (20-30 feet each way) of the fault, wrap the pipe with giant blankets filled with all kind of tubes and wires, feed LN2 through the tubes, and *freeze* the oil. With the frozen oil acting as a plug, the faulty section is cut open, drained, the bad stuff removed, replaced, welded back together, topped off, and the plugs are thawed. To make sure the frozen plugs don’t blow out, the oil pressure is reduced to 80 psi during the repair process. They can’t lower it any further, again due to several compelling reasons. The cable was laid in 1972 and was designed to have a MTBF of 60 years.

Continue reading “Find And Repair A 230kV 800Amp Oil-Filled Power Cable Feels Like Mission Impossible”