USB-C-ing All The Things

Wall warts. Plug mounted power supplies that turn mains voltage into low voltage DC on a barrel jack to power a piece of equipment. We’ve all got a load of them for our various devices, most of us to the extent that it becomes annoying. [Mikeselectricstuff] has the solution, in the shape of a USB-C PD power supply designed to replace a barrel jack socket on a PCB.

The video below provides a comprehensive introduction to the topic before diving into the design. The chip in question is the CH224K, and he goes into detail on ordering the boards for yourself. As the design files are freely available, we wouldn’t be surprised if they start turning up from the usual suppliers before too long.

We like this project and we can see that it would be useful, after all it’s easy to end up in wall wart hell. We’ve remarked before that USB-C PD is a new technology done right, and this is the perfect demonstration of its potential.

Continue reading “USB-C-ing All The Things”

USB VSense

USB-C Rainbow Ranger: Sensing Volts With Style

USB-C has enabled a lot of great things, most notably removing the no less than three attempts to plug in the cable correctly, but gone are the days of just 5V over those lines. [Meticulous Technologies] sent in their project to help easily identify what voltage your USB-C line is running at, the USB VSense.

The USB VSense is an inline board that has USB-C connectors on either end, and supporting up to 240W you don’t have to worry about it throttling your device. One of the coolest design aspects of this board is that it uses stacked PCB construction as the enclosure, the display, and the PCB doing all the sensing and displaying. And for sensing this small device has a good number of cool tricks, it will sense all the eight common USB-C voltages, but it will also measure and alert you to variations of the voltage outside the normal range by blinking the various colored LEDs in specific patterns. For instance should you have it plugged into a line that’s sitting over 48V the VSense white 48V LED will be rapidly blinking, warning you that something in your setup has gone horribly wrong.

Having dedicated uniquely colored LEDs for each common level allows you to at a glance know what the voltage is at without the need to read anything. With a max current draw of less than 6mA you won’t feel bad about using it on a USB battery pack for many applications.

The USB VSense has completed a small production run and has stated their intention to open source their design as soon as possible after their Crowd Supply campaign. We’ve featured other USB-C PD projects and no doubt we’ll be seeing more as this standard continues to gain traction with more and more devices relying on it for their DC power.

The Most Trustworthy USB-C Cable Is DIY

We like USB-C here at Hackaday, but like all specifications it is up to manufacturers to follow it and sometimes… they don’t. Sick of commercial cables either don’t label their safe wattage, or straight up lie about it, [GreatScott!] decided to DIY his own ultimate USB-C-PD cable for faster charging in his latest video, which is embedded below.

It’s a very quick project that uses off-the-shelf parts from Aliexpress: the silicone-insulated cable, the USB-C plugs (one with the all-important identifier chip), and the end shells. The end result is a bit more expensive than a cable from Aliexpress, but it is a lot more trustworthy. Unlike the random cable from Aliexpress, [GreatScott!] can be sure his has enough copper in it to handle the 240W it is designed for. It should also work nicely with USB PPS, which he clued us into a while back. While [GreatScott!] was focusing here on making a power cable, he did hook up the low-speed data lines, giving him a trustworthy USB2.0 connection.

This isn’t the first time we’ve seen someone test USB gear and find it wanting, though the problem may have improved in the last few years. Nowadays it’s the data cables you cannot trust, so maybe rolling your own data cables will make a comeback. (Which would at least be less tedious than than DB-25 was back in the day. Anyone else remember doing that?) USB-C can get pretty complicated when it comes to all its data modes, but we have an explainer to get you started on that. Continue reading “The Most Trustworthy USB-C Cable Is DIY”

Why USB-C Splitters Can Cause Magic Smoke Release

Using USB for powering devices is wonderful, as it frees us from a tangle of incompatible barrel & TRS connectors, not to mention a veritable gaggle of proprietary power connectors. The unfortunate side-effect of this is that the obvious thing to do with power connectors is to introduce splitters, which can backfire horribly, especially since USB-C and USB Power Delivery (USB-PD) were introduced. The [Quiescent Current] channel on YouTube recently went over the ways in which these handy gadgets can literally turn your USB-powered devices into a smoldering pile of ashes.

Much like Qualcomm’s Quick Charge protocols, USB-PD negotiates higher voltages with the power supply, after which this same voltage will be provided to any device that’s tapped into the power supply lines of the USB connector. Since USB-C has now also taken over duties like analog audio jacks, this has increased the demand for splitters, but these introduce many risks. Unless you know how these splitters are wired inside, your spiffy smartphone may happily negotiate 20V that will subsequently fry a USB-powered speaker that was charging off the same splitter.

In the video only a resistor and LED were sacrificed to make the point, but in a real life scenario the damage probably would be significantly more expensive.

Continue reading “Why USB-C Splitters Can Cause Magic Smoke Release”

Need High-Power Li-Ion Charging? How About 100 W

Ever want a seriously powerful PCB for charging a Li-Ion pack? Whatever you want it for, [Redherring32] has got it — it’s a board bearing the TPS25750D and BQ25713 chips, that lets you push up to 100 W into your 1S Li-Ion pack through the magic of USB Power Delivery (USB-PD).

Why do you need so much power? Well, when you put together a large amount of Li-Ion cells, this is how you charge it all at once – an average laptop might charge the internal battery at 30 W, and it’s not uncommon for laptop batteries to be dwarfed by hackers’-built packs.

A 4-layer creation peppered with vias, this board’s a hefty one — it’s not often that you see a Li-Ion charger designed to push as much current as possible into a cell, and the chips are smart enough for that. As far as the onboard chips’ capabilities go, the board could handle pack configurations from 1S to 4S, and even act as a USB-PD source — check the IC configuration before you expect to use it for any specific purpose.

Want a simpler charger, even if it’s less powerful? Remember, you can use PPS-capable PD chargers for topping up Li-Ion packs, with barely any extra hardware required.

HP WebOS TouchPad Gets With The USB-C Times

Despite HP shuttering their WebOS project some time ago, the operating system has kept a dedicated following. One device in particular, the HP TouchPad, was released just a month before webOS went under and is still a favorite among hackers — giving the device the kind of love that HP never could. [Alan Morford] from the pivotCE blog shares the kind of hack that helps this device exist in a modern-day world: a USB-C upgrade for charging and data transfer.

The inline micro USB port used is a perfect fit for a USB-C upgrade, with only small amounts of PCB and case cutting required. Just make sure to get a breakout that has the appropriate 5.1 K resistors onboard, and follow [Alan]’s tutorial closely. He shows all the points you need to tap to let your TouchPad charge and transfer data to your computer, whether for firmware flashing or for daily use.

This hack doesn’t preserve the USB-OTG feature, but that’s fixable with a single WUSB3801. Apart from that, this mod is perfect for keeping your webOS tablet alive and kicking in today’s increasingly USB-C dominated world. Once you’ve done it, you might want to take care of your PlayStation 4 controllers and Arduino Uno boards, too.

Tiny ’90s Laptop Gets Modern Power

The laptop to have here in the 2020s varies depending on who you ask, perhaps a Framework, or maybe a ThinkPad. Back in the 1990s the answer might have included a now-forgotten contender, because in that decade Toshiba made a range of legendarily tough chunky grey machines. Of these the smallest was the Libretto, a paperback book sized clamshell design which was an object of desire. It’s one of these that [Robert’s Retro] has upgraded to use USB-C power instead of the original power brick.

The full video is below the break, and while it first deals with replacing a defective screen, the power part starts just before 22 minutes in. As you’d expect it involves a USP-C PD trigger board, this time at 15 volts. It’s mounted in a small 3D printed adapter to fill the space of the original jack, and requires a tiny notch be removed from the corner of its PCB to fit round the motherboard. The rest of the video deals with reassembling the machine and tending to mishaps with the ageing plastic, but the result is a Libretto with a modern charging port.

Naturally a machine with a Pentium CPU and 32 megabytes of RAM is in of limited use in modern terms, but these Librettos remain very well-designed tiny PCs to this day. It’s great to see them still being modified and upgraded, even if perhaps there’s a limit to how far you can push their computing power. We’ve encountered the Libretto before a few times, such as when one was used to retrieve data from an old Flash card.

Continue reading “Tiny ’90s Laptop Gets Modern Power”