Now You’re Washing With Gas

[Michiel] likes to wash his clothes in warm water. Like a lot of machines, his draws from the cold water line and  heats it electrically. Gas is much cheaper than electricity in the Netherlands, so he wanted to be able to heat the water with gas instead. Hot-fill machines already exist, but few models are available and they’re all too expensive.  [Michiel] rolled up his sleeves and hacked his brand new washer into a hot-fill machine.

He started out thinking that he’d just connect the hot water line instead, but that proved to be too hot. He found out it needs to be about 35°C (95°F), so he decided to mix input from the hot and cold lines. Since it’s a shiny new machine, [Michiel] wanted an externally mounted system to keep from voiding  the warranty. He got two solenoid valves from the electronic bay and used a PIC16F to make them dance. He wired up a light switch on a two-panel face and used the blank plate for power and status LEDs.

[Michiel]’s design works like a charm. The machine used to draw 2000W to heat the water, and peak usage now is as low as 200W. He noticed that the washer drew a lot of power in standby mode so he added a solid state relay and a bit more code. Now the electricity to the machine is cut after two hours and [Michiel] saves about €97 per year.

Washing Machines That Do It Without Electricity

Those of us living in the first world take clean clothes for granted. Throw them in the washing machine, transfer to the dryer after 45 minutes, and you won’t smell for another two weeks or so. But for people living in areas without electricity, clean clothes are a huge amount of work. Hand washing a family’s clothes is estimated at 6 hours per day, three to five days per week. Here’s a post that looks at some of the different human-powered washing machines out there.

We’ve built our own human-powered machine before using a five-gallon bucket with a hole in the lit to receive the handle of a toilet plunger which acts as an agitator. But that pales in comparison to some of the machines seen here. The concept we like the most is shown above. It’s an MIT project being used at an orphanage in Peru. The bicycle lets you easily power the spinning basket inside of the drum. The rear derailleur has been mounted on the axle so that the rider has a wider range of gears when spinning heavy loads. Take a look at the post linked above to see all of the offering, but we’ve also embedded video of two of them after the break.

If you were looking for a washing-machine powered bike instead of a bike-powered washing machine you’ll want to head on over to this post.

Continue reading “Washing Machines That Do It Without Electricity”

Building A Coffee Roaster From Junk

[Rxdtxd] has tried his hand at roasting coffee beans in a frying pan. It works but he can only roast small batches at once. What he really needed was a large-scale roaster that would have no problem with a few pounds of the green beans all at once. He ended up building this large-scale coffee roaster out of junk parts.

The vessel which holds the beans is the drum from a top-loading washing machine. It was headed for the junk pile, but the fully-enclosed drum is perfect for this purpose. After acquiring it [Rxdtxd] set out welding a frame that would hold either side by the pivot points. He used a geared motor to automate the process. The output shaft on the gear box is meant to drive a chain, but he just welded some pieces onto the gear to use as a coupling.

In the picture above he’s giving the roaster a thorough testing with about ten pounds of beans. A portable gas stove placed below the rotating drum supplies the heat. After the beans have reached the desired darkness he pours them out into a large skillet to cool. Take a peek at the roasting action in the clip after the break.

Continue reading “Building A Coffee Roaster From Junk”

Monitoring A Clothes Washer With An Accelerometer

[Viktor’s] washing machine did a good job of cleaning his clothes, but it kept a bit too quiet about it. The machine doesn’t have an audible alert to let him know the cycle has finished. He decided to build his own alarm which can just be slapped on the side of the machine.

You can see that a couple of magnets hold the board to the metal housing of the washer. The board doesn’t actually connect to any of the machine’s circuitry so this should work about equally as well for any unit. The detection is based on motion, thanks to a Freescale MMA7361 3-axis accelerometer. When he starts a load of wash he flips the power switch for the board on. The PIC 12F683 that drives the device starts monitoring the accelerometer for changes. If it goes for more than about one minute without reading motion the piezo buzzer starts beeping. It’s a fun and easy solution along the same line of this oven pre-heat alarm add-on.

Washing Machine Powered Bike

[Ameres Valentin] was looking for a less expensive way to get around after spending in excess of 100 Euros a month on public transportation in Munich. His solution is an electric bicycle powered by a washing machine motor. It’s a 300 Watt motor that runs on 24 Volts, capable of around 3000 RPM. We’re used to seeing hub motors or chain drives on electric vehicle hacks, but it looks like [Ameres] is using a flywheel on the motor shaft to drive the rear wheel of the bike through direct contact.

Inside the saddle bag you’ll find two 12 volt 12 amp hour sealed lead acid batteries which are used in series. It looks like he charges these with a wall wart (that we think might use a switching power supply) modified with a couple of large alligator clamps. A push button mounted on the handlebars makes it go.We wonder if he’s still able to pedal when the batteries are running low? We don’t see a way to disengage the motor from the rear wheel so we’d bet this is something of an issue. Then again, if that charge actually works you’re never far from an opportunity to top off the batteries.

Check out a quick clip of the motor spinning the wheel embedded after the break.

Continue reading “Washing Machine Powered Bike”

LAN-connected Washing Machine Lets You Know When Your Clothes Are Done

lan_connected_washing_machine_laundruino

[Micha’s] washing machine is equipped with a rather inaccurate timer, so it is always difficult to estimate when the load will be finished. Since it is located in his basement, he hated having to check on the machine continually to know when his clothes were done. Instead of hauling up and down the stairs over and over, he decided to hack in an “end of cycle” notifier of his own.

The washer has an LED that lights when it is finally done doing its thing, so [Micha] removed the LED and soldered in two wires, which he then connected to his Arduino. When the washer is finished and the LED should be lit, the Arduino senses that the input has been pulled low, signaling the end of the cycle. The Arduino was hooked into his home network via an Ethernet shield, enabling him to monitor the process from the comfort of the nearest web browser.

It’s a clever implementation, and it sure saves him a lot of time trudging up and down the stairs. Nice job!

Washing Machine Mechanical Timer Replaced With Microcontroller

After the electromechanical timer on [Paul Canello’s] washing machine broke for the third time he decided he needed to stop repairing it and find a more permanent fix. He decided to build his own microcontroller-based system for washing his clothes (translated). Caution: The image links on [Paul’s] page seem to be broken and will unleash a never-ending storm of empty pop-up windows if you click on them. We’ve embedded all of the images after the break to save you some hassle.

The controller on a washing machine is nothing more than a mechanical alarm clock. It starts the cycle, then moves through various modes based on the passage of time. [Paul] started his hack by observing how long the delay between cycles was meant to be, and recording which parts of the machine were switched on and off at each stage.

It turns out that when the mechanical knob is turned, it reroutes how water flows through the detergent chamber. Since that knob won’t be in the new system [Paul] came up with a way for the microcontroller to handle this by using a servo motor. The rest of the control involves relays to control the motor, and solenoid valves for the water. There are also pressure switches that give feedback for the level of the water in the machine. A PIC 16F872 serves as the new controller, with the help of a 7 segment display, a buzzer, and a pair of buttons as the user interface.

This is an older project, but after reading about the Arduino controlled dishwasher [Ramiro] sent us a link. Thanks! Continue reading “Washing Machine Mechanical Timer Replaced With Microcontroller”