Neon Watch Glows Rather Nicely, Tells Time

It wasn’t long after the development of the LED that LED watches became available. They were prized for their clear light output and low power draw. Neon bulbs, on the other hand, are thirsty for current and often warm or even hot in operation. And yet, [Lucas] found a way to build them into a sweet watch that actually does the job. Nice, right?

The design uses a simple trick to avoid killing the batteries with excessive power draw. The neon lamps are only activated when the user waves a hand above the watch, at which point the lamps light to display the time. Reading the time is  a little fiddly, but understandable with the aid of this PDF diagram. Basically, the two electrodes of each neon lamp are driven independently. This gives each of the four lamps three possible states: with the first electrode lit, the second electrode lit, or both lit. Four lamps multiplied by three states equals 12—so the watch can display the hour quite easily. As for minutes, a similar scheme is used with some modifications for clarity. Setting the time is via a light sensor on the watch which picks up flashes from a computer screen.

It reminds us of a time when we once thought nixie tubes were too power hungry for a wristwatch build… until the hackers of the world proved us wrong. Video after the break.

Continue reading “Neon Watch Glows Rather Nicely, Tells Time”

The ‘Scope Of This Kickstarter? Ten Years.

It may have taken ten years to come through on this particular Kickstarter, but a promise is a promise. In late August 2023, backers who had since likely forgotten all about the project started receiving their oscilloscope watches from creator [Gabriel Anzziani]. Whatever the reason(s) for the delay, the watch looks great, and is miles ahead of the prototype pictures.

As you may have guessed, it functions as both a watch and an oscilloscope. The watch has 12- and 24-hour modes as well as an alarm and calendar, and the ‘scope has all the features of the Xprotolab dev board, which [Gabriel] also created: ‘scope, waveform generator, logic analyzer, protocol sniffer, and frequency counter.

Internally, it has an 8-bit Xmega microcontroller which features an internal PDI, and the display is a 1.28″ E ink display. When we covered this ten years ago, the screen was the type of Sharp LCD featured in the Pebble watch. [Gabriel]’s ‘scope watch features eight buttons around the edge which are user-programmable. One of [Gabriel]’s goals was for people to make their own apps.

Of course, the Kickstarter rewards are no longer available, but if you want to build your own small, digital ‘scope, check out this DIY STM32 project.

Image via the Company Formerly Known As Twitter

Bare PCB Makes A Decent Homemade Smart Watch

These days, we live in a post-Dick Tracy world, where you can make a phone call with your fancy wristwatch, and lots more besides. [akashv44] has gone a simpler route, designing their own from scratch with a bare PCB design.

The build is based around the ESP-12E microcontroller, providing useful wireless connectivity that lets the watch interface with the outside world. The firmware makes queries of NTP servers and Yahoo’s weather API to collect time and weather data for display. It’s also capable of interacting with Blynk relay modules for controlling other equipment, which [akashv44] uses with lights and an air conditioner. The watch uses a small OLED display and a handful of small surface-mount tactile buttons for control. Power is courtesy of a small lithium-ion pouch cell, with charging handled by a TP4056 battery management IC.

It’s a simple smartwatch, but nonetheless one that teaches all kinds of useful skills in embedded development and design. It’s also funny to think how simple it is to build. A decade ago, before the ESP8266 was released, getting wireless connectivity in such a small package was a major engineering challenge. Even the Apple Watch didn’t come out until 2015! Food for thought.

An Open Firmware For LILYGO’s E-ink Smart Watch

The world’s first quartz wristwatches were miles ahead of electric and mechanical wristwatches by most standards of the time, their accuracy was unprecedented and the batteries typically lasted somewhere on the order of a year. Modern smart watches, at least in terms of battery life, have taken a step backwards — depending on use, some can require daily charging.

If you’re looking to bridge the gap between a day and a year, you might look into a smart watch with an e-ink display. One option is the ESP32-based LILYGO T-Wrist. Of course, it’s not a smart watch without some software to run on it, which is where qpaperOS comes in.

Developed by [qewer33], this open source firmware for the T-Wrist is designed to get the most out of the battery by updating only once per minute. With a 250 mAh battery, it should last about five days on a charge. Of course, with the power of the ESP32 comes a whole host of other features including GPS, a step counter, and a weather display, although since the firmware is still under development, some of these features have yet to be implemented.

With all of the code available, qpaperOS could make an excellent platform from which to build your own smart watch around. Or perhaps you could chip in and add some of the features on the whislity. The ESP32 is a capable and versatile chip, even capable of playing popular 8-bit video games, although we’re not sure this functionality would fit in a smart watch and preserve battery life at the same time.

Adding Smart Watch Features To Vintage Casio

[Matteo] has been a fan of the Casio F-91W wristwatch virtually since its release in 1989. And not without good reason, either. The watch boasts reliable timekeeping and extremely long battery life thanks to a modern quartz crystal and has just about every feature needed in a watch such as an alarm and a timer. And, since it’s been in use since the 80s, it’s also a device built to last. The only thing that’s really missing from it, at least as far as [Matteo] was concerned, was a contactless payment ability.

Contactless systems use near-field communication (NFC) to remotely power a small chip via a radio antenna when in close proximity. All that’s really required for a system like this is to figure out a way to get a chip and an antenna and to place them inside a new device. [Matteo] scavenges the chip from a payment card, but then builds a new antenna by hand in order to ensure that it fits into the smaller watch face. Using a NanoVNA as an antenna analyzer he is able to recreate the performance of the original antenna setup in the smaller form factor and verify everything works before sealing it all up in a 3D-printed enclosure that sandwiches the watch.

There are a few reasons why using a contactless payment system with a watch like this, instead of relying on a smartwatch, might be preferential. For one, [Matteo] hopes to explore the idea that one of the physical buttons on the watch could be used to physically disable the device to reduce pickpocketing risk if needed. It’s also good to not have to buy the latest high-dollar tech gadget just for conveniences like this too, but we’ve seen in the past that it’s not too hard just to get these systems out of their cards in the first place.

A wristwatch based on a red PCB with seven-segment LCD screens

The Time Machine Mk. 8 Is A Sleek Smartwatch With Retro Styling

The primary purpose of a wristwatch is to tell the time, which pretty much any watch does perfectly fine. It’s in the aesthetics, as well as features other than time-telling, where a watchmaker can really make their product stand out from the rest. Watchmaker and electronic artist [Eric Min] focused on those two areas when he designed the Time Machine Mk.8, which combines exquisite design with simple, offline smartwatch functionality.

The heart of the watch is a Microchip ATSAMD21G18 low-power 32-bit microcontroller. [Eric] chose it for its high performance, ease of use and large number of integrated peripherals, a real-time clock being one of them. With the basic clock function thus taken care of, he then decided to add several useful sensors: a battery fuel gauge to keep an eye on the 40 mAh rechargeable lithium cell, a three-axis accelerometer to enable motion sensing and an environmental sensor to track temperature, humidity and pressure.

A faux 1980s magazine ad for a red PCB wristwatchThe various functions are operated using four pushbuttons along with a 16-step rotary encoder set in the middle. The overall design of the watch is inspired by Formula 1 steering wheels, as well as various sports cars and media franchises like Neon Genesis Evangelion and Akira. [Eric] considered a few different options for the display but eventually settled on two four-digit seven-segment LCDs, which fit nicely into the retro-futuristic aesthetic of the Mk.8. It’s so retro, in fact, that it almost makes [Eric]’s faux 1980s magazine ad look genuine.

All components neatly fit together on a dual-layer PCB, which is a true work of art in itself. From the lightning bolt on the front to the hidden Frank Sinatra lyrics, it definitely stands out from the crowd of ordinary LCD wristwatches. It’s also quite a step up from [Eric]’s previous watch design, the Time Machine Mk.IV.

Over the years we’ve seen several other examples of how a bare PCB, or even a stack of them, can become a beautiful wristwatch.

Apple Invent The Mechanical Watch

The Apple Watch has been on the market for long enough that its earlier iterations are now unsupported. Where some see little more than e-waste others see an opportunity, as has [NanoRobotGeek] with this mechanical watch conversion on a first-generation model.

What makes this build so special is its attention to detail. Into the Apple Watchcase has gone a Seiko movement, but it hasn’t merely been dropped into place. It uses the original Apple watch stem which is offset, so he’s had to create a linkage and a tiny pulley system to transfer the forces from one to the other. The rotor is custom-machined with am Apple logo, and the new watch face is a piece of laser-cut and heat treated zirconium. Even the watch movement itself needed a small modification to weaken the stem spring and allow the linkage to operate it.

The build is a long one with many steps, and we’re being honest when we say it would put our meager tiny machining skills to an extreme test. Sit down and take your time reading it, it really is a treat. Apple Watches may head to the tip after five years, but not this one!

See more in the video below the break, and of course long-time readers may remember we’ve considered the Apple Watch versus mechanical watches before.

Continue reading “Apple Invent The Mechanical Watch”