Libre Space Foundation Aims To Improve Satellite Tech

There’s no shortage of movies, TV shows, and books that show a dystopian future with corporations run amok in outer space with little or no effective oversight. Dune, The Expanse, and The Dispossessed spring to mind as predicting different aspects of this idea, but there are plenty of other warnings throughout sci-fi depicting this potential future. One possible way of preventing this outcome is by ensuring that space is as open-sourced as possible and one group, the Libre Space Foundation (LSF), is working towards this end. Their latest is a project with Ondsel to develop and model a satellite deploying mechanism using almost entirely open source software.

The LSF had already designed the PICOBUS satellite launcher system that flew to space in 2022 and deployed a number of CubeSats, but the group needed more information about how the system would perform. They turned to Ondsel to help develop a multi-body dynamics (MBD) solver, managing simulations with mass-spring-damper models. The satellite launcher includes a large constant-force spring that pushes the CubeSats out of the device once the door is opened, and the model can now simulate their paths in space without gravity. The team will launch their next set of satellites sometime next year on an RFA-ONE rocket.

The LSF maintains a huge database of their open source space projects, including this one, on their GitLab page. Although it might seem like small potatoes now, the adoption of open source software and hardware by space-fairing entities can help further the democratization of low Earth orbit.

Thanks to [johnad] for the tip!

Axial 3D Printer Aces Test Aboard Virgin Spaceplane

Here on Earth, being able to 3D print replacement parts is handy, but rarely necessary. If you’ve got a broken o-ring, printing one out is just saving you a trip to the hardware store. But on the Moon, Mars, or in deep space, that broken component could be the difference between life and death. In such an environment, the ability to print replacement parts on demand promises to be a game changer.

Which is why the recent successful test of a next-generation 3D printer developed by a group of Berkeley researchers is so exciting. During a sub-orbital flight aboard Virgin Galactic’s Unity spaceplane, the SpaceCAL printer was able to rapidly produce four test prints using a unique printing technology known as computed axial lithography (CAL).

Continue reading “Axial 3D Printer Aces Test Aboard Virgin Spaceplane”

Developing An App For Reduced-Gravity Flying

You’ve likely heard of the “vomit comet” — an rather graphic nickname for the aircraft used to provide short bursts of near-weightlessness by flying along a parabolic trajectory. They’re used to train astronauts, perform zero-g experiments, and famously let director Ron Howard create the realistic spaceflight scenes for Apollo 13. But you might be surprised to find that, outside of the padding that lines their interior for when the occupants inevitably bump into the walls or ceiling, they aren’t quite as specialized as you might think.

In fact, you can achieve a similar result in a small private aircraft — assuming you’ve got the proper touch on the controls. Which is why [Chaz] has been working on an Android app that assists pilots in finding that sweet spot.

Target trajectory, credit: MikeRun

With his software running, the pilot first puts the plane into a climb, and then noses over and attempts to keep the indicator on the phone’s display green for as long as possible. It’s not easy, but in the video after the break you can see they’re able to pull it off for long enough to get things floating around the cockpit.

Continue reading “Developing An App For Reduced-Gravity Flying”

Turbine-driven Robot To Navigate Inside Space Station

It may look more like a Companion Cube than R2-D2, but the ISS is getting an astromech droid of sorts.

According to [Trey Smith] of the NASA Ames Research Center, Astrobee is an autonomous robot that will be able to maneuver inside the ISS in three dimensions using vectored thrust from a pair of turbines. The floating droid will navigate visually, using a camera to pick out landmarks aboard the station, including docking ports that let it interface with power and data. A simple arm allows Astrobee to grab onto any of the hand rails inside the ISS to provide a stable point for viewing astronaut activities or helping out with the science.

As cool as Astrobee is, we’re intrigued by how the team at Ames is testing it. The droid is mounted on a stand that floats over an enormous and perfectly flat granite slab using low-friction CO₂ gas bearings, giving it freedom to move in two dimensions. We can’t help but wonder why they didn’t suspend the Astrobee from a gantry using a counterweight to add that third dimension in. Maybe that’s next.

From the sound of it, Astrobee is slated to be flight ready by the end of 2017, so we’ll be watching to see how it does. But if they find themselves with a little free time in the schedule, perhaps adding a few 3D-printed cosmetics would allow them to enter the Hackaday Sci-Fi Contest.