Using Acetone to Create Print Transfers

Looking for an easy way to print transfer a logo or image? Don’t have time to get transfer paper? Did you know you can use… regular paper? Turns out there’s a pretty awesome method that just uses Acetone to transfer the ink!

Using a laser printer, print off your desired logo or image. Don’t forget to mirror it! Place the paper onto the material you would like to transfer the graphic to, face down. It works best on wood and cloth, but can also be done on metal, glass and even plastic!  Continue reading “Using Acetone to Create Print Transfers”

Making PLA stick to a 3D printer build platform by using hairspray or an acetone ABS slurry

[Chris] has been having some real problems getting PLA to stick to the build platform of his Printrbot. This is of course not limited to this brand of printers, and affects all extruder-based hardware using the PLA as a source material. He came up with a couple of ways to fix the problem.

The first is something we’re quite familiar with. The image above shows [Chris] applying a thin layer of hairspray to the platform. This is a technique the we use with our own 3D printer. The sheets of paper are used as a mask to help keep the sticky stuff off of the threaded rod. For more info on the hairspray trick [Chris] recommends that you read this article.

The second technique uses a slurry made from saturating a bottle of acetone with ABS leftovers. In the clip after the break he shows off a glass jar of the solvent with scraps from past print jobs hanging out inside. After a couple of days like that it’s ready to use. He takes a paper towel, wets it with the solution, and wipes on a very small amount. He does mention that this will eventually eat through the Kapton tape so apply it rarely and sparingly.

Continue reading “Making PLA stick to a 3D printer build platform by using hairspray or an acetone ABS slurry”

Smoothing 3D Prints with Acetone Vapor

If you’ve ever used an extruding 3D printer, you know that the resulting prints aren’t exactly smooth. At the Southackton hackerspace [James] and [Bracken] worked out a method of smoothing the parts out using vapor. The method involves heating acetone until it forms a vapor, then exposing ABS parts to the vapor. The method only works with ABS, but creates some good looking results.

Acetone is rather flammable, so the guys started out with some safety testing. This involved getting a good air to fuel mixture of acetone, and testing what the worst case scenario would be if it were to ignite. The tests showed that the amount of acetone they used would be rather safe, even if it caught fire, which was a concern several people mentioned last time we saw the method.

After the break, [James] and [Bracken] give a detailed explanation of the process.

Continue reading “Smoothing 3D Prints with Acetone Vapor”

More acetone-vapor polishing experiments

acetone-vapor-polishing-experiments

If you’re thinking of trying the acetone-vapor polishing process to smooth your 3D printed objects you simply must check out [Christopher’s] experiments with the process. He found out about the process from our feature a few days ago and decided to perform a series of experiments on different printed models.

The results were mixed. He performed the process in much the same way as the original offering. The skull seen above does a nice job of demonstrating what can be achieved with the process. There is a smooth glossy finish and [Christopher] thinks there is no loss of detail. But one of the three models he tested wasn’t really affected by the vapor. He thinks it became a bit shinier, but not nearly as much as the skull even after sending it through the process twice. We’d love to hear some discussion as to why.

There is about eight minutes of video to go along with the project post. You’ll find it after the jump.

Continue reading “More acetone-vapor polishing experiments”

Making a Wearable NFC Bus Pass

[Stephen Cognetta] is trying to get the total number of things he owns down below 115, and he’s always looking for ways to streamline his life.

Toward this goal he dissolved his SF Transit Clipper Card in acetone to get at the NFC tag embedded inside. The tag consists of a tiny chip attached to an antenna the size of the card itself. It took about three days (video below the break) for the layers to separate and [Stephen] was able to extricate the tag.

He ended up trying a few different ways of storing the delicate chip and antenna, including a lump of Sugru as well as a waterproof aspirin band, pictured to the right.

One supposes the transit pass idea might save you a little time, but what would really simplify your life would be having a single wearable tag that unlocked a bunch of things. Also it should be noted that, un-coolly, damaging a card violates SF Transit’s terms of service…

HaD has covered NFC wearables before, including the phone-unlocking NFC ring as well as the NFC ring box. This NFC-controlled infinity mirror makes great use of the technology.

Continue reading “Making a Wearable NFC Bus Pass”

Star Trek Desktop Viewer In The Palm Of Your Hand!

There’s building small computers — like the Raspberry Pi — and then there’s building small computers — like this Desktop Viewer from Star Trek.

[Monta Elkins] is using a Beetle for this project; it’s an Arduino clone, hosting the ATMega32U4 microcontroller, with a unique feature that allows you to twist connecting wires to secure them to the board. Instead, [Elkins] went with the logical choice of soldering them. For a display, he used a SPI serial OLED 128 x 64 monochrome screen which he has cycling through a number of iconic Star Trek TOS symbols and animations. The images were converted into PROGMEM  — which gets loaded into flash memory — before finally being uploaded to the Beetle.

Following some fine 3D print work in ABS plastic which rendered the Desktop Viewer’s case, [Elkins] used acetone to solvent-weld the pieces together and applied a quick coat of paint to finish it off. This little replica would make a great desktop gadget as it requires a micro-USB to power the device.

Continue reading “Star Trek Desktop Viewer In The Palm Of Your Hand!”

The Latest In 3D Printed Part Smoothing: Use A Brush

Part smoothing for 3D printed parts, especially parts printed in ABS, has been around for a while. The process of exposing an ABS part to acetone vapor turns even low-resolution prints into smooth, glossy 3D renderings that are stronger than ever. The latest improvement in part smoothing for 3D printed parts is now here: use a brush. Published in Nature‘s Scientific Reports, researchers at Waseda University have improved the ABS + acetone part smoothing process with a brush.

According to the authors of the paper, traditional filament-based printing with ABS has its drawbacks. The grooves formed by each layer forms a porous surface with a poor appearance and low rigidity. This can be fixed by exposing an ABS part to acetone vapor, a process we’ve seen about a million times before. The acetone vapor smoothing process is indiscriminate, though; it smooths and over-smooths everything, and the process involves possible explosions.

The researcher’s solution is a felt tip pen-like device that selectively applies acetone to a 3D printed part. Compared to the print over-smoothed in a vat of acetone vapor, more detail is retained. Also, there’s a ready market for felt tip pens and there isn’t one for crock pots able to contain explosive vapor. This is, therefore, research that can be easily commercialized.