Brutal Water Cannon Defeats Summer Heat; Kills it on Documentation

There’s a war on, and while this over-the-top water blaster is certainly an escalation in the Water Wars arms race, that’s not the war we’re referring to. We’re talking about the Documentation War. Hackers, you’re on notice.

Gj3YAOLIf you want to see how a project should be documented, look no further than [Tim]’s forum posts over at WaterWar.net. From the insanely detailed BOM with catalog numbers and links to supplier websites, to scads of build photos with part number callouts, to the finely detailed build instructions, [Tim] has raised the stakes for anyone that documents any kind of build.

And that’s not even touching on the merits of the blaster itself, which has air and water tanks plumbed with every conceivable valve and fitting. There’s even an inline stream straightener made of bundled soda straws to keep the flow as laminar as possible. It looks like [Tim] and his colleagues are obsessed with launching streams of water as far as possible, and although bad weather has prevented an official measurement so far, from the video below it sure looks like he’s covering a huge distance with a stream that stays mostly intact to deliver the full blast to its intended target without losing a drop.

For as much fun as amped-up water guns appear to be, we haven’t seen too many grace these pages before. Going way back we covered a DIY super-soaker. For something much less involved than [Tim’s] masterpiece, you can pull together this pressurized water pistol in an afternoon.

Continue reading “Brutal Water Cannon Defeats Summer Heat; Kills it on Documentation”

Reverse Engineering Hoverboard Motor Drive

The must-have toy of the moment last winter was the “Hoverboard”. We all probably secretly wished them to be the boards from the Back to the Future series of films made real, but the more achievable reality is a self-balancing scooter somewhat akin to a miniature Segway. It seemed every child wanted one, schools banned them, and there was a media frenzy over some of the cheaper models that lacked protection circuitry for their li-ion batteries and thus had a tendency for self-incineration.

[Drew Dibble] is interested in the Power Racing Series (PRS), in which toy electric cars are souped up for competition. Casting around for a source of cheap and relatively powerful motors he lit upon the self-balancing scooters, and waited on Craigslist for the inevitable cast-offs. His resulting purchase had two 350W brushless hub motors and all the associated circuit boards for motor control, gyroscope, and oddly a Bluetooth speaker. The motor control board received an unknown two-wire digital feed from the scooter’s control board, so he set to work investigating its protocol. His write-up of how he did it is an interesting primer in logic line detective work.

Hooking up his logic analyzer he was quickly able to rule out the possibility of the control signal being PWM because all signals followed the same timing. Both lines had data so he was able to rule out I2C, for in that case one line would carry a clock. He was therefore left with a serial line, and taking the 38 microsecond timing interval, he was able to calculate that it had a rather unusual bitrate of 26315 BPS. Each packet had a multiple of 9 bits so he either had 9-bit or 8-bit with parity, and trying all possible parity schemes resulted in parity errors. Therefore the boards used a highly unusual 9-bit non-standard bitrate serial port. Some experimentation led him to an Arduino library, and he was able to get some movement from his motors. Some clever timing detective work later and he could make them move at will, success!

All his code for the project is on GitHub, for his 9-bit SoftwareSerial library and a motor control sketch.

If you want a real Back to the Future hoverboard then you may have to wait a while longer. We have featured a replica made as an unrideable floating artwork though, and a working board that is more of a personal hovercraft.

Continue reading “Reverse Engineering Hoverboard Motor Drive”

Gyroman Walks with Just One Motor

For some reason, we seem to really want our robots to walk on two legs like we do. And this despite how much the robots themselves want to be made out of motors, which match up so naturally with wheels. The result is a proliferation of inventive walking mechanisms. Here’s another.

Gyroman is a 3D printed gyroscope with legs. The gyroscope is geared down to lift one leg and then the other. First-semester physics, that we still find a little bit magical, makes the gyro precess and the robot turns a bit. Time these just right and it walks. See the video below for a demo. (Admittedly, Gyroman looks like he’s had a bit too much to drink as he winds down.)

Continue reading “Gyroman Walks with Just One Motor”

35 MPH NERF Darts!

Did you know the muzzle velocity of a NERF dart out of a toy gun? Neither did [MJHanagan] until he did all sorts of measurement. And now we all know: between 35 and 40 miles per hour (around 60 km/h).

foo_thumbnailFirst, he prototyped a single beam-break detector (shown above) and then expanded his build to two in order to get velocity info. A Propeller microcontroller took care of measuring the timing. Then came the gratuitous statistics. He took six different darts and shot them each 21 times, recording the timings. Dart #3 was the winner, but they all had similar average speeds. You’re not going to win the office NERF war by cherry-picking darts.

Anyway, [MJ] and his son had a good time testing them out, and he thinks this might make a good kids’ intro to science and statistics. We think that’s a great idea. You won’t be surprised that we’ve covered NERF chronographs before, but this implementation is definitely the scienciest!

Thanks [drudrudru] for the tip!

Automating RC Motor Efficiency Testing

Small brushless motors and LiPo batteries are one of the most impressive bits of technology popularized in recent years. Just a few years ago, RC aircraft were powered by either anemic brushed motors or gas. Quadcopters were rare. Now, with brushless motors, flying has never been easier, building electric longboards is simple, and electric bicycles are common.

Of course, if you’re going to make anything fly with a brushless motor, you’ll probably want to know the efficiency of your motor and prop setup. That’s the idea behind [Michal]’s Automated RC Motor Efficiency Tester, his entry to the 2016 Hackaday Prize.

[Michal]’s project is not a dynamometer, the device you should use if you’re measuring the torque or power of a motor. That’s not really what you want if you’re testing brushless motors and prop configurations, anyway; similarly sized props can have very different thrust profiles. Instead of building a dyno for a brushless motor, [Michal] is simply testing the thrust of a motor and prop combination.

The device is very similar to a device sold at Hobby King, and includes a motor mount, microcontroller and display, and a force sensor to graph the thrust generated by a motor and prop. Data can be saved to an SD card, and the device can be connected to a computer for automatic generation of pretty graphs.

Brushless motors are finding a lot of uses in everything from RC planes and quadcopters, to robotics and personal transportation devices. You usually don’t get much of a data sheet with these motors, so any device that can test these motors will be very useful.

The HackadayPrize2016 is Sponsored by:

The Ultimate 1:1 BB-8 Build Guide

BB-8 is not only a cute little droid but also presents dandy of a challenge for hackers ’round the globe to try and recreate in the garage. Nonfunctional models are a dime a dozen and the novelty has long worn off the Sphero toy. This brings us to a legit full-scale BB-8, seen in action in the video after the break.

Lucky for us, [Ed Zarick] has written up a blog post that’s as impressive as the build itself. [Ed] has drawn some inspiration and shared knowledge from several online groups focused around recreating the BB-8. He also provides some thorough Solidworks assemblies that look painfully detailed.

Continue reading “The Ultimate 1:1 BB-8 Build Guide”

Most Beautiful Mini-Galaga-Pi Ever!

The problem with click-bait titles, besides the fact that they make the reader feel cheated and maybe a little bit dirty for reading the article, is that they leave us with nothing to say when something is truly outstanding. But the video of [Tiburcio de la Carcova] building up a mini-Galaga cabinet (complete with actual tiny CRT screen from an old portable 5″ TV) is actually the best we’ve ever seen.

Plywood is laser-cut. Custom 3D printed parts are manufactured and assembled, including the joysticks and coin door. Aluminum panels are cut on a bandsaw and bent with a hand brake. Parts are super-glued. In short, it’s a complete, sped-up video of the cutting-edge of modern DIY fab. If that’s not enough reason to spend four minutes of your time, we don’t know what is.

[Tiburcio] has also made a mini Space Invaders, and is thinking of completing the top-20 of his youth. Pacman, Asteroids, and Missile Command are next. We can’t wait.

There are (ahem) a couple of Raspberry-Pi-powered video game emulators on Hackaday, so it’s a little awkward to pick one or two to link in. We’ll leave you with this build that also uses a small CRT monitor to good effect albeit in less-fancy clothing.

Continue reading “Most Beautiful Mini-Galaga-Pi Ever!”