DIY Hololens Uses Pepper’s Ghost in a Box!

Entirely too excited about Microsoft’s Hololens, the DIY community has leaped on the challenge to make some hardware before the real deal comes out. [Sean Hall] has an excellent 3D printed prototype that makes use of the Pepper’s Ghost illusion to create a “hologram” for this pair of unique VR goggles.

Similar to other DIY virtual reality goggles we’ve seen, [Sean] has 3D printed the enclosure — but instead of slapping the smart phone right in front of your eyes, it’s mounted above the goggles, reflecting off of a mirror and then a piece of transparent plexi-glass, which produces a hologram like effect thanks to the concept of Pepper’s Ghost illusion.

The problem with any of these reflection-based-holograms is they aren’t always that easy to see, so [Sean] is planning to try out some 1-way reflective car tint to get a more visible reflection while still being able to see through the image. He also plans to add gaze tracking with some open-source software called Project Haytham. It’s a depth sensor using a Kinect, head tracking using a Playstation Move and maybe even a leap motion controller for virtual object manipulation.

Check out the current state of this hack in the clip after the break.

Continue reading “DIY Hololens Uses Pepper’s Ghost in a Box!”

Putting Oculus Rift on a Robot

Many of the early applications for the much anticipated Oculus Rift VR rig have been in gaming. But it’s interesting to see some more useful applications besides gaming, before it’s commercial release sometime this year. [JoLau] at the Institute i4Ds of FHNW School of Engineering wanted to go a step beyond rendering virtual worlds. So he built the Intuitive Rift Explorer a.k.a IRE. The IRE is a moving reality system consisting of a gimbaled stereo-vision camera rig transmitting video to the Rift, and matching head movements received from the Oculus Rift. The vision platform is mounted on a Remote-controlled robot which is completely wireless.

One of the big challenges with using VR headsets is lag, causing motion sickness in some cases. He had to tackle the problem of latency – reducing the time from moving the head to getting a matching image on the headset – Oculus Rift team specified it should be less than 20ms. The other important requirement is a high frame rate, in this case 60 frames per second. [JoLau] succeeded in overcoming most of the problems, although in conclusion he does mention a couple of enhancements that he would like to add, given more time.

[JoLau] provides a detailed description of the various sub-systems that make up IRE – the Stereo camera,  audio and video transmission, media processing, servo driven gimbal for the stereo camera,  and control system code. [JoLau]’s reasoning on some of the interesting hardware choices for several components used in the project makes for interesting reading. Watch a video of the IRE in action below.

Continue reading “Putting Oculus Rift on a Robot”

Build Your Own Gear VR

With Samsung’s new Gear VR announced, developers and VR enthusiasts are awaiting the release of the smartphone connected VR headset. A few people couldn’t wait to get their hands on the platform, so they created, OpenGear, a Gear VR compatible headset.

The OpenGear starts off with a Samsung Galaxy Note 4, which is the target platform for the Gear VR headset. A cardboard enclosure, similar to the Google Cardboard headset, holds the lenses and straps the phone to your face.

The only missing part is the motion tracking electronics. Fortunately, ST’s STM32F3 Discovery development board has everything needed: a microcontroller with USB device support, a L3GD20 3 axis gyro, and a LSM303DLHC accelerometer/magnetometer. These components together provide a USB inertial measurement unit for tracking your head.

With the Discovery board strapped to the cardboard headset, an open-source firmware is flashed. This emulates the messages sent by a legitimate Oculus Rift motion tracker. The Galaxy Note 4 sees the device as a VR headset, and lets you run VR apps.

If you’re interested, the OpenGear team is offering a development kit. This is a great way for developers to get a head start on their apps before the Gear VR is actually released. The main downside is how you’ll look with this thing affixed to your face. There’s a head-to-head against the real Gear VR after the break.

[via Road To VR]

Continue reading “Build Your Own Gear VR”

CastAR Hands-On and Off-Record Look at Next Version

At long last I had the opportunity to try out the CastAR, a glasses-based Augmented Reality system developed by Technical Illusions. The hardware has been in the works now for a couple of years, but every time we have come across a demo we were thwarted by the long lines that accompany them. This time I was really lucky. [Jeri] gave us a private demo in a suite at the Palazzo during CES 2015. Reflecting on the experience, CastAR is exactly the type of Virtual Reality hardware I’ve been longing for.

Continue reading “CastAR Hands-On and Off-Record Look at Next Version”

“Superfan” Gaming Peripheral Lets You Feel Your Speed

Virtual reality has come a long way but some senses are still neglected. Until Smell-O-Vision happens, the next step might be feeling the wind in your hair. Perhaps dad racing a sportbike or kids giggling on a rollercoaster. Not as hard to build as you might think, you probably have the parts already.

HAD - Superfan4Off-the-shelf devices serve up the seeing and hearing part of your imaginary environment, but they stop there. [Jared] wanted to take the immersion farther by being able to feel the speed, which meant building his own high power wind generator and tying it into the VR system. The failed crowdfunding effort of the “Petal” meant that something new would have to be constructed. Obviously, to move air without actually going on a rollercoaster requires a motor controller and some fans. Powerful fans.

A proponent of going big or going home, [Jared] picked up a pair of fans and modified them so heavily that they will launch themselves off of the table if not anchored down. Who overdrives fans so hard they need custom heatsinks for the motors? He does. He admits he went overboard and sensibly way overbudget for most people but he built it for himself and does not care.

Continue reading ““Superfan” Gaming Peripheral Lets You Feel Your Speed”