Fallout Inspired Cellphone Wristwatch

[Mr. Volt] mentions that some of the commenters on his videos believed that he shouldn’t be making large, retro computer themed communicator watches. He believes they are wrong, naturally we are compelled to agree with him.

thrumbzIn his latest build he has produced a rather well-built and large cell-phone watch. After the untimely death of an Apple II cellphone watch, he decided to up his game and make one that could take more of a beating. The case is 3D printed, which is hard to believe given the good finish. He must have spent a long time sanding the prints. Some wood veneer for looks and aluminum panels for strength complete the assembly.

The electronics are a Teensy and a GSM module. It looks like he places calls by calling the operator since the wrist communicator only has four inputs: a red button, a blue button, and a momentary switch rotary encoder.

The communicator appears to work really smoothly, and it would certainly draw attention to him were he to wear it anywhere other than the Wasteland. Video after the break.

Continue reading “Fallout Inspired Cellphone Wristwatch”

Talk to the Glove

Two University of Washington students exercised their creativity in a maker space and created a pair of gloves that won them a $10,000 prize. Obviously, they weren’t just ordinary gloves. These gloves can sense American Sign Language (ASL) and convert it to speech.

The gloves sense hand motion and sends the data via Bluetooth to an external computer. Unlike other sign language translation systems, the gloves are convenient and portable. You can see a video of the gloves in action, below.

Continue reading “Talk to the Glove”

WISP Needs No Battery Or Cable

One of the problems with the Internet of Things, or any embedded device, is how to get power. Batteries are better than ever and circuits are low power. But you still have to eventually replace or recharge a battery. Not everything can plug into a wall, and fuel cells need consumables.

University of Washington researchers are turning to a harvesting approach. Their open source WISP board has a sensor and a CPU that draws power from an RFID reader. To save power during communication, the device backscatters incoming radio waves, which means it doesn’t consume a lot of its own power during transmissions.

The big  news is that TU Delft has contributed code to allow WISP to reprogram wirelessly. You can see a video about the innovation below. The source code is on GitHub. Previously, a WISP had to connect to a PC to receive a new software load.

Continue reading “WISP Needs No Battery Or Cable”

Windows 95 On An Apple Watch

What happens if the slick user interface and tight iOS integration of your Apple Watch leave you wanting more? A real operating system, from the days when men were men and computers were big grey boxes!

[Nick Lee] solved this unexpected problem with his Watch by getting a working copy of Windows 95 to run on it. On paper it shouldn’t be at all difficult, with a 520 MHz ARM, 512 MB of RAM, and 8GB of storage you might think that it would eclipse the quick 486s and low-end Pentiums we ran ’95 on back in the day with ease. But of course, the ability to run aged Redmond operating systems on a Watch was probably not at the top of the Apple dev team’s feature list, so [Nick] had to jump through quite a few hoops to achieve it.

As you might expect, the ’95 installation isn’t running directly on the Watch. In the absence of an x86 processor his complex dev process involved getting the Bochs x86 emulator to compile for the Watch, and then giving that a ’95 image to boot. The result is comically slow, with a 1-hour boot time and a little motor attached to the Watch to vibrate it and stop it going to sleep. It’s not in any way a useful exercise, after all who’d really want to use ’95 on a Watch? Internet Explorer 3 and The Microsoft Network, how handy! But it’s one of those “because you can” exercises, and we applaud [Nick] for making it happen. If you want to give it a try, his Bochs-forWatchOS code is on Github.

The video below the break shows the process of booting the ’95 Watch, opening the Start Menu, and running one of the card games. One can almost feel the lengthening shadows outside as it goes.

Continue reading “Windows 95 On An Apple Watch”

Super Thin Display Makes Your Skin Your Screen

Researchers in Japan have created a 3-micrometer display that looks like plastic wrap and can make any part of your skin into an electronic display. The idea isn’t new, but this display is far thinner and more durable than previous devices. It also lasts longer (several days) and has increased brightness.

The display uses polymer LEDs to form a seven-segment digit, so you aren’t going to stream Netflix to the back of your hand anytime soon.  However, the team wants to build more advanced displays that could one day replace smartwatch or smartphone screens.

Continue reading “Super Thin Display Makes Your Skin Your Screen”

Stretchable Traces for Flexible Circuits

Electronic components are getting smaller and smaller, but the printed circuit boards we usually mount them on haven’t changed much. Stiff glass-epoxy boards can be a limiting factor in designing for environments where flexibility is a requirement, but a new elastic substrate with stretchable conductive traces might be a game changer for wearable and even implantable circuits.

qxMo1DResearchers at the Center for Neuroprosthetics at the École Polytechnique Fédérale de Lausanne are in the business of engineering the interface between electronics and the human nervous system, and so have to overcome the mismatch between the hardware and wetware. To that end, [Prof. Dr. Stéphanie P. Lacour]’s lab has developed a way to apply a liquid metal to polymer substrates, with the resulting traces capable of stretching up to four times in length without cracking or breaking. They describe the metal as a partially liquid and partially solid alloy of gallium, with a gold added to prevent the alloy from beading up on the substrate. The applications are endless – wearable circuits, sensors, implantable electrostimulation, even microactuators.

Looks like progress with flexibles is starting to pick up, what with the conductive silicone and flexible phototransistors we’ve covered recently. We’re excited to see where work like this leads.

Continue reading “Stretchable Traces for Flexible Circuits”

Blinky LED Bike Bag

Bicycle riders can never be too visible: the more visible you are, the less chance there is someone will hit you. That’s the idea behind the Arduibag, a neat open-source project from [Michaël D’Auria] and [Stéphane De Graeve]. The project combines a joystick that mounts on the handlebars with a dot matrix LED display in a backpack. By moving the joystick, the user can indicate things such as that they are turning, stopping, say thank you or show a hazard triangle to warn of an accident.

The whole project is built from simple components, such as an Adafruit LED matrix and a Bluno (an Arduino-compatible board with built-in Bluetooth 4.0) combined with a big battery that drives the LED matrix. This connects to the joystick, which is in a 3D printed case that clips onto the handlebars for easy use. It looks like a fairly simple build, with the larger components being mounted on a board that fits into the backpack and holds everything in place. You then add a clear plastic cover to part of the backpack over the LED matrix, and you are ready to hit the road, hopefully without actually hitting the road.

Continue reading “Blinky LED Bike Bag”