Visual Scanner Turns Obstacles into Braille

This interesting project out of MIT aims to use technology to help visually impaired people navigate through the use of a haptic feedback belt, chest-mounted sensors, and a braille display.

The belt consists of a vibration motors controlled by what appears to be a Raspberry Pi (for the prototype anyway) with a distance sensor and camera connected as well. The core algorithm is designed to take input from the camera and distance sensors to compute the distance to obstacles, and to buzz the right motor to alert the user — fairly expected stuff. However, the project has a higher goal: to assist in identifying and using chairs.

Aiming to detect the seat and arms, the algorithm looks for three horizontal surfaces near each other, taking extra care to ensure the chair isn’t occupied. The study found that, used in conjunction with a cane, the system noticeably helped users navigate through realistic environments, as measured by minor and major collisions. Users recorded dramatically fewer collisions as compared to using the system alone or the cane alone. The project also calls for a belt-mounted braille display to relay more complicated information to the user.

We at HaD have followed along with several braille projects, including a refreshable braille display, a computer with a braille display and keyboard, and this braille printer.

Continue reading “Visual Scanner Turns Obstacles into Braille”

Bouncing Pack Eases Those Tired Shoulders

If you are a hillwalker, wherever your preferred stomping ground may be you’ll know the importance of a pack with a good strap system. A comfortable pack will make the difference between tiredness and agony, and can easily add a considerable difference to your daily range.

At Arizona State University’s Human Integration Laboratory, they were approached by the US Army to investigate means by which the effect of carrying a heavy backpack could be mitigated. A soldier’s full kit is extremely heavy, and while the best available webbing systems will make a contribution to the comfort of carrying it, they can only go so far. There is still the jarring effect of the impulse force of such a significant load bearing down on the soldier’s shoulders as it comes down after every step, and this when taken over a lengthy march makes a significant difference to overall endurance.

The ASU lab’s solution was to mount the load on a spring-loaded vertical actuator attached to the pack harness and frame. The on-board microcontroller judges the moment of maximum downward impulse force as the wearer comes down from a step, and applies a corresponding upward force to the actuator. Power comes from a lithium-ion battery pack. The effect is to make the load oscillate up and down, and to lessen the wear and tear on the shoulders. It does not reduce the weight you are carrying, but it does lift it off your shoulders for an instant just when you need it.

There is a video of it being tested in the sun-drenched Arizona mountains, that we’ve placed below the break.

Continue reading “Bouncing Pack Eases Those Tired Shoulders”

Robotic Arms Controlled By Your….. Feet?

The days of the third hand’s dominance of workshops the world over is soon coming to an end. For those moments when only a third hand is not enough, a fourth is there to save the day.

Dubbed MetaLimbs and developed by a team from the [Inami Hiyama Laboratory] at the University of Tokyo and the [Graduate School of Media Design] at Keio University, the device is designed to be worn while sitting — strapped to your back like a knapsack — but use while standing stationary is possible, if perhaps a little un-intuitive. Basic motion is controlled by the position of the leg — specifically, sensors attached to the foot and knee — and flexing one’s toes actuates the robotic hand’s fingers. There’s even some haptic feedback built-in to assist anyone who isn’t used to using their legs as arms.

The team touts the option of customizeable hands, though a soldering iron attachment may not be as precise as needed at this stage. Still, it would be nice to be able to chug your coffee without interrupting your work.

Continue reading “Robotic Arms Controlled By Your….. Feet?”

Head-Up Display Augments Bionic Turtle’s Reality

There’s a harsh truth underlying all robotic research: compared to evolution, we suck at making things move. Nature has a couple billion years of practice making things that can slide, hop, fly, swim and run, so why not leverage those platforms? That’s the idea behind this turtle with a navigation robot strapped to its back.

This reminds us somewhat of an alternative universe sci-fi story by S.M. Stirling called The Sky People.  In the story, Venus is teeming with dinosaurs that Terran colonists use as beasts of burden with brain implants that stimulate pleasure centers to control them. While the team led by [Phill Seung-Lee] at the Korean Advanced Institute of Science and Technology isn’t likely to get as much work from the red-eared slider turtle as the colonists in the story got from their bionic dinosaurs, there’s still plenty to learn from a setup like this. Using what amounts to a head-up display for the turtle in the form of a strip of LEDs, along with a food dispenser for positive reinforcement, the bionic terrapin is trained to associate food with the flashing LEDs. The LEDs are then used as cues as the turtle navigates between waypoints in a tank. Sadly, the full article is behind a paywall, but the video below gives you a taste of the gripping action.

Looking for something between amphibian and fictional dinosaurs to play mind games with? Why not make your best friend bionic? Continue reading “Head-Up Display Augments Bionic Turtle’s Reality”

Energy Harvesting Wristwatch Uses a Versatile Photodiode

There’s some interesting technology bundled into this energy harvesting wristwatch. While energy harvesting timepieces (called automatic watches) have been around for nearly 240 years, [bobricius] has used parts and methods that are more easily transferable to other projects.

Unlike early mechanical systems, this design uses the versatile BPW34 PIN photodiode (PDF warning). PIN photodiodes differ from ordinary PN diodes in that there’s a layer of undoped ‘intrinsic’ silicon separating the P and N doped layers. This reduces the utility of the diode as a rectifier, while allowing for higher quantum efficiency and switching speed.

They are typically used in the telecommunications industry, but have a number of interesting ‘off label’ applications. For example, the BPW34 can be used as a solid-state particle detector (although for detecting alpha particles you’re better off with something in a TO-5 package such as the Hamamatsu S1223-01). The fast response speed means you can send data with lasers or ambient light at high frequencies – a fun use for an LED lighting system or scrap DVD-RW laser.

Some common solar panels are essentially large PIN photodiodes. These are the brownish panels that you’ll find in a solar-powered calculator, or one of those eternally waving golden plastic neko shrines. They specifically offer excellent low-light performance, which is the basis of the energy harvesting used in this project.

Continue reading “Energy Harvesting Wristwatch Uses a Versatile Photodiode”

Go Big or Go Home: A Tablecloth Touchpad

Phone screens keep getting bigger. Computer screens keep getting bigger. Why not a large trackpad to use as a mouse? [MaddyMaxey] had that thought and with a few components and some sewing skills created a trackpad in a tablecloth.

The electronics in this project are right off the shelf. A Flora board for the brains and 4 capacitive touch boards. If you haven’t seen the Flora, it is a circular-shaped Arduino made for sewing into things. The real interesting part is the construction. If you haven’t worked with conductive fabric and thread, this will be a real eye-opener. [Maddy’s] blog has a lot of information about her explorations into merging fabric and electronics and also covers things like selecting conductive thread.

As an optional feature, [MaddyMaxey] added vibration motors that provide haptic feedback to her touchpad. We were hoping for a video, but there doesn’t seem to be one. The code is just the example program for the capacitive sensor boards, although you can see in a screenshot the additions for the haptic motors.

We’ve covered the Flora before, by the way. You could also make a ridiculously large touch surface using tomography, although the resolution isn’t quite good enough for mouse purposes.

Exoskeleton Aims to Prevent Falls for Seniors

When we think of exoskeletons, we tend to think along comic book lines: mechanical suits bestowing superhero strength upon the villain. But perhaps more practical uses for exoskeletons exists: restoring the ability to walk, for instance, or as in the case of these exoskeleton shorts, preventing hip fractures by detecting and correcting falls before they happen.

Falls and the debilitating injuries that can result are a cruel fact of life for the elderly, and anything that can potentially mitigate them could be a huge boon to public health. Falls often boil down to loss of balance from slipping, whether it be a loose rug, a patch of ice, or even the proverbial banana peel. The “Active Pelvic Orthosis” developed by [Vito Monaco] and colleagues seeks to sense slips and correct them by applying the correct torque to the hip joints. Looking a little bulky in their prototype form and still tethered to an external computer, the shorts have motors with harmonic drives and angle sensors for each hip, plus accelerometers to detect the kinematic signature of a slip. The researchers discovered that forcing the leg that slipped forward while driving the stable leg back helped reduce the possibility of a fall. The video below shows the shorts in action preventing falls on a slip-inducing treadmill.

At the Hackaday Unconference in Pasadena, we heard from [Raul Ocampo] on his idea for autonomous robots to catch falling seniors. Perhaps wearing the robot will end up being a better idea.

Continue reading “Exoskeleton Aims to Prevent Falls for Seniors”