Bluetooth Enabled Fuel Consumption Monitor

[Malebuffy] bought himself a used boat last year. Fuel isn’t exactly cheap where he lives, so he wanted a way to monitor his fuel consumption. He originally looked into purchasing a Flowscan off the shelf, but they were just too expensive. In the interest of saving money, [Malebuffy] decided to build his own version of the product instead.

To begin, [Malebuffy] knew he would need a way to display the fuel data once it was collected. His boat’s console didn’t have much room though, and cutting holes into his recently purchased boat didn’t sound like the best idea. He decided he could just use his smart phone to display the data instead. With that in mind, [Malebuffy] decided to use Bluetooth to transmit the data from the fuel sensors to his smart phone.

The system uses an older Arduino for the brain. The Arduino gets the fuel consumption readings from a Microstream OF05ZAT fuel flow sensor. The Arduino processes the data and then transmits it to a smart phone via a Bluetooth module. The whole circuit is powered from the boat battery using a DC adapter. The electronics are protected inside of a waterproof case.

[Malebuffy’s] custom Android apps are available for download from his website. He’s also made the Arduino code available in case any one wants to copy his design.

Home Depot Brand Boat Costs $29.18

hdboat

It is a common belief (or fact, depending who you talk to) that boats are money pits. Surely, it is a fun past time even for the lucky person flipping the bill, but what if you could build a boat from locally found and purchased items. [Bill] did just this and he did it for a mere $30. His creation is affectionately called Thunder Bucket.

The overall design is a pontoon-based sail boat. You’ll notice from the photo that the pontoons are made from many 5 gallon buckets attached together. The wood frame and deck come courtesy of old pallets that were taken apart. The mast is a fence post and a standard blue tarp rounds out the resourcefulness as it is used for the sail.

Admittedly, this may not be the coolest boat on the waterways but it is a boat, it’s made from non-boat-like items and it works. Believe it or not [Bill] is a professional boat builder. Sometimes ‘why not?’ is the best reason to do something.

An autonomous boat across the Atlantic

boat

While we may be waiting for unmanned drones to deliver a pizza, there’s already an unmanned ship plying the Atlantic on a transoceanic voyage. It’s called Scout, and it’s the product of about two years worth of work by a very close-knit group of friends.

Scout is a 12.5 foot ship constructed out of foam and carbon fiber loaded up with solar panels, electronics, an electric motor and a SPOT satellite tracker. The team has been working on Scout for the last two years now, and this last week the autonomous ship finally set out on its mission: a 3500 mile journey from Rhode Island across the Atlantic to Spain.

Right now, Scout is just over four days into its mission having travelled 90 miles from Rhode Island on its way to Spain. You can follow Scout on its journey on this very cool live tracking site.

Continue reading “An autonomous boat across the Atlantic”

Tracking ships using software-defined radio (SDR)

tracking-ships-using-sdr

When we first started hearing about software-defined radio hacks (which often use USB dongles that ring it at under $20) we didn’t fully grasp the scope of that flexibility. But now we’ve seen several real-life examples that drive the concept home. For instance, did you know that SDR can be used to track ships? Ships large and small are required by may countries to use an Automatic Identification System (AIS) transponder. The protocol was originally developed to prevent collisions on large ships, but when the cost of the hardware became affordable the system was also brought to smaller vessels.

[Carl] wrote in to share his project (which is linked above). Just like the police scanner project from April this makes use of RTL-SDR in the form of a TV tuner dongle. He uses the SDRSharp software along with a Yagi-UDA. The captured data is then decoded and plotted on a map using ShipPlotter.

Water Strider robot does it with Lego parts

This Lego watercraft uses drinking bottles as pontoons arranged in a pattern that make it look very much like a Water Strider, the insects that dance on the surface of a lake.

After the break you can see a video of the rig gracefully navigating a local pond, along with a raft of ducks. It’s quiet enough not to startle them, which is nice. We don’t get a good look at the propulsion system, but [Vimal Patel] calls the floats “hockey bottles” in his Flickr comments. They appear to be Lego themed and we’re wondering if they are some type of packaging for a small set that doubles as a sports drinking bottle once the pieces are removed? The rig includes a camera which provides a great persepcive very near the water level.

This isn’t his only floating creation. He’s got a second rig that was used to film some of the footage of this one.

Continue reading “Water Strider robot does it with Lego parts”

Adding power trim to a boat

[Matt’s] boat had a trim plate that could be adjusted by hand. The problem with this setup is that the trim angle of a boat changes as you speed up or slow down. Last year he never really went over 35 MPH because of this issue, but he set out to correct that by adding power trim plates for the upcoming boating season.

The original trim plate didn’t have a hinge on it, but simply flexed when tension was added to the adjustment hardware. [Matt] removed the plate and cut it into three parts; one long thin strip to serve as a mounting bracket, and two plates to independently adjust trim for the left and right side of the keel. Some aluminum strip hinges connect the three pieces, and a pair of used actuators acquired from eBay automate the trim adjustment. Each plate is strengthened by a pair of angle brackets, which also serve as a mounting point for the actuators. The final step was to add a pair of switches near the throttle lever which are used to make manual adjustments when the boat is in motion.