Project Sea Rendering Autonomously Renders Sea Bottoms

[Geir] has created a pretty neat device, it’s actually his second version of an autonomous boat that maps the depths of lakes and ponds. He calls it the Sea Rendering. The project is pretty serious as the hull was specially made of fiberglass. The propulsion is a simple DC motor and the rudder is powered by an RC servo. A light and flag adorn the top deck making the small craft visible to other larger boats that may be passing by. Seven batteries are responsible for all of the power requirements.

Sea Rendering

The craft’s course is pre-programmed in Mission Planner and uses ArduPilot loaded on an Arduino to steer to the defined way points. An onboard GPS module determines the position of the boat while a transducer measures the depth of the water. Both position and depth values are then saved to an SD card. Those values can later be imported into a software called Dr Depth that generates a topographic map of the water-covered floor.

[Geir] has sent this bad boy out on an 18 km journey passing through 337 way points. That’s pretty impressive! He estimates that the expected run time is 24 hours at a top speed of 3 km/h, meaning it could potentially travel 72 km on a single charge while taking 700 depth measurements during the voyage.

Continue reading “Project Sea Rendering Autonomously Renders Sea Bottoms”

Canoeing Sans Paddles. Yes, it is Possible

Now that Spring is upon us, it’s time to get out the kayaks, canoes and row boats. As fun as paddling around a lake may be, after a long winter of sitting inside our arms are not up to that task. Well, [comsa42] has a solution to that problem. He’s made a quick-attaching trolling motor setup for his canoe and documented the process along the way.

[comsa42] started with a run of the mill canoe. Although he wanted a trolling motor option, he didn’t want to permanently modify the canoe. He started by making a wooden beam that spans the width of the canoe and overhangs on one side. The beam was notched out to securely fit over the lip of the canoe and a couple bolts and washers were used to clamp the beam to the canoe. This beam is just a few inches behind the rear seat so that the motor is at a comfortable position for the person steering.

The electric trolling motor is attached to this beam. To power the trolling motor, [comsa42] wired up two 12v deep cycle marine batteries in parallel. He installed them in a recycled wooden case to protect the batteries from the elements or occasional splash.

Continue reading “Canoeing Sans Paddles. Yes, it is Possible”

Bluetooth Enabled Fuel Consumption Monitor

[Malebuffy] bought himself a used boat last year. Fuel isn’t exactly cheap where he lives, so he wanted a way to monitor his fuel consumption. He originally looked into purchasing a Flowscan off the shelf, but they were just too expensive. In the interest of saving money, [Malebuffy] decided to build his own version of the product instead.

To begin, [Malebuffy] knew he would need a way to display the fuel data once it was collected. His boat’s console didn’t have much room though, and cutting holes into his recently purchased boat didn’t sound like the best idea. He decided he could just use his smart phone to display the data instead. With that in mind, [Malebuffy] decided to use Bluetooth to transmit the data from the fuel sensors to his smart phone.

The system uses an older Arduino for the brain. The Arduino gets the fuel consumption readings from a Microstream OF05ZAT fuel flow sensor. The Arduino processes the data and then transmits it to a smart phone via a Bluetooth module. The whole circuit is powered from the boat battery using a DC adapter. The electronics are protected inside of a waterproof case.

[Malebuffy’s] custom Android apps are available for download from his website. He’s also made the Arduino code available in case any one wants to copy his design.

Home Depot Brand Boat Costs $29.18

hdboat

It is a common belief (or fact, depending who you talk to) that boats are money pits. Surely, it is a fun past time even for the lucky person flipping the bill, but what if you could build a boat from locally found and purchased items. [Bill] did just this and he did it for a mere $30. His creation is affectionately called Thunder Bucket.

The overall design is a pontoon-based sail boat. You’ll notice from the photo that the pontoons are made from many 5 gallon buckets attached together. The wood frame and deck come courtesy of old pallets that were taken apart. The mast is a fence post and a standard blue tarp rounds out the resourcefulness as it is used for the sail.

Admittedly, this may not be the coolest boat on the waterways but it is a boat, it’s made from non-boat-like items and it works. Believe it or not [Bill] is a professional boat builder. Sometimes ‘why not?’ is the best reason to do something.

An autonomous boat across the Atlantic

boat

While we may be waiting for unmanned drones to deliver a pizza, there’s already an unmanned ship plying the Atlantic on a transoceanic voyage. It’s called Scout, and it’s the product of about two years worth of work by a very close-knit group of friends.

Scout is a 12.5 foot ship constructed out of foam and carbon fiber loaded up with solar panels, electronics, an electric motor and a SPOT satellite tracker. The team has been working on Scout for the last two years now, and this last week the autonomous ship finally set out on its mission: a 3500 mile journey from Rhode Island across the Atlantic to Spain.

Right now, Scout is just over four days into its mission having travelled 90 miles from Rhode Island on its way to Spain. You can follow Scout on its journey on this very cool live tracking site.

Continue reading “An autonomous boat across the Atlantic”

Tracking ships using software-defined radio (SDR)

tracking-ships-using-sdr

When we first started hearing about software-defined radio hacks (which often use USB dongles that ring it at under $20) we didn’t fully grasp the scope of that flexibility. But now we’ve seen several real-life examples that drive the concept home. For instance, did you know that SDR can be used to track ships? Ships large and small are required by may countries to use an Automatic Identification System (AIS) transponder. The protocol was originally developed to prevent collisions on large ships, but when the cost of the hardware became affordable the system was also brought to smaller vessels.

[Carl] wrote in to share his project (which is linked above). Just like the police scanner project from April this makes use of RTL-SDR in the form of a TV tuner dongle. He uses the SDRSharp software along with a Yagi-UDA. The captured data is then decoded and plotted on a map using ShipPlotter.