Neopixel Bedroom Clock Uses ESP8266

When [Vance] joined his local hackspace he sought a project to take advantage of the new tools at his disposal. His solution: an attractive LED colour wheel clock using neopixels driven by an NTP-synchronised ESP8266. Each neopixel illuminates a segment of the clock face through frosted diffuser, the hours are tracked as a red light, the minutes blue, and the seconds green. As each color passes another they are mixed, creating a changing colorscape. 12 neopixels are used, and the whole clock is mounted in a laser cut enclosure.

After an initial prototype on a piece of stripboard he created a PCB in KiCad, complete with space for a 3.3v regulator. This and the source code can be found on the project’s GitHub repository.

The resulting clock is a very high quality build as well as being attractive and useful in its own right. The video shows the color mixing in action, or at least the cyan and yellow products of it. Continue reading “Neopixel Bedroom Clock Uses ESP8266”

Metal Magic: Heat Bluing Steel Clock Hands

Metalwork of any kind is fascinating stuff to watch. When the metalwork in question is in service of the clockmaker’s art, the ballgame changes completely. Tiny screws and precision gears are created with benchtop lathes and milling machines, and techniques for treating metals border on alchemy – like heat-bluing of steel clock hands for a custom-built clock.

If you have even a passing interest in metalwork and haven’t followed [Clickspring]’s YouTube channel, you don’t know what you’re missing. [Chris] has been documenting a museum-quality open-body clock build, and the amount of metalworking skill on display is amazing. In his latest video, he covers how he heat-blues steel to achieve a wonderful contrast to the brass and steel workings. The process is simple in principle but difficult in practice – as steel is heated, a thin layer of oxides forms on the surface, enough to differentially refract the light and cause a color change. The higher the heat, the thicker the layer, and the bluer the color. [Chris] uses a custom-built tray filled with brass shavings to even out the heat of a propane torch, but even then it took several tries to get the color just right. As a bonus, [Chris] gives us a primer on heat-treating the steel hands – the boric acid and methylated spirits bath, propane torch flame job and oil bath quenching all seems like something out of a wizard’s workshop.

We’ve covered [Chris]’ build before, and we encourage everyone to tune in and watch what it means to be a craftsman. We only hope that when he finally finishes this clock he starts another project right away.

Continue reading “Metal Magic: Heat Bluing Steel Clock Hands”

This Hourglass Flips Itself

Once upon a time, [Mike] bought an hourglass for his sister. He intended to build it into a clock and give it to her as a gift, but life and other projects got in the way. Fast forward a couple of decades to the point when it all came together and [Mike] had everything he needed on hand to build a beautiful wooden clock that automatically flips the hourglass over.

Every 60 minutes, the bulb, which is situated inside a handcrafted maple ring, rotates 180 degrees to restart the flow of sand. Whatever number is at the top of the outer wheel denotes the current hour. The digit for the next hour is always at the five o’clock position relative to the current hour. This works out because the pockets on the outside of the bulb’s ring share a 5:6 ratio with the gear teeth on the outer ring. Confused? Watch the time-lapse video from [Mike]’s that shows it in action.

[Mike] was determined to build this clock using only things he already had on hand, like a cheap digital watch to keep time and a car window motor to rotate the hourglass. He hacked a USB port into the watch so he could use the hourly chime function to trigger the motor through a quad op-amp. The motor runs until it is triggered to shut off optically—a pair of slits cut into the gear that moves the hourglass pass over a sensor. [Mike] built a beautiful box to hold the guts from a nice piece of walnut and spared no detail in the design.

There are a ton of build pictures on the projects site and an in-depth video tour of the clock, which is embedded after the break. Whether they are designed to amaze or confuse, we love a good clock build around here. If you’re into hourglasses, we featured a digital version not too long ago.

Continue reading “This Hourglass Flips Itself”

Glitching Square Wave Clock Is Designed To Confuse

[Voja Antonic] has built a clock that tells the time in binary with square waves, and trolls the uninitiated in electronics.

The clock itself is very attractive. If you look closely you can see the circuitry backlit behind the dot LED matrix display. The whole thing is housed in a nicely folded steel case. RGB LEDs are used to good effect to highlight some additionally obfuscating circuit schematics. The workmanship is very top notch, and we would gladly host such an object on our desks.

The clock’s standard time telling mode is three sets of square waves showing the binary values for the hours, minutes, and seconds. Every now and then the clock will glitch out. The waves will distort. The colors will change. And every now and then, tantalizingly, the alpha-numeric time will show up for just a split second, before returning to those weird squiggles again.

We’ve seen a whole slew of binary clocks before. This one, for instance. But the waveform display makes us feel just that little bit more at home — it’s just like we’re sitting in front of our oscilloscope.

Cheap Smartwatch Teardown

A proper smartwatch can cost quite a bit of money. However, there are some cheap Bluetooth-connected watches that offer basic functions like show your incoming calls, dial numbers and display the state of your phone battery. Not much, but these watches often sell for under $20, so you shouldn’t expect too much.

Because they’re so cheap, [Lee] bought one of these (a U8Plus) and within an hour he had the case opened up and his camera ready. As you might expect, the biggest piece within was the rechargeable battery. A MediaTek MT6261 system on a chip provides the smart part of the watch.

Continue reading “Cheap Smartwatch Teardown”

3D Printed Tourbillon Clock

3D printed clocks have been done before, but never something like this. It’s a 3D printed clock with a tourbillon, a creative way to drive an escapement developed around the year 1800. Instead of a pendulum, this type of clock uses a rotating cage powered by a spring. It’s commonly found in some very expensive modern watches, but never before has something like this been 3D printed.

3D Printed Clock[Christoph Lamier] designed this tourbillon clock in Autodesk Fusion 360, with 50 printable parts, and a handful of pins, screws, and washers. The most delicate parts – the hairspring, anchor, escapement wheel, and a few gears were printed at 0.06 layer height. Everything else was printed at a much more normal resolution with 0.1mm layer height.

Because nearly the entire clock is 3D printed, this means the spring is 3D printed as well. This enormous 2 meter-long spiral of printed plastic could not have been printed without altering a few settings on the printer. The setting in question is Cura’s ‘combing’ or the ‘avoid crossing perimeters’ setting. If you don’t disable this setting, the print time increases by 30%, and moving the print head causes the plastic to ooze out over the spring.

There’s a 26-minute long video of the 3D printed tourbillon clock in action that is horrendously boring. It does demonstrate this clock works, though. You can check out the more interesting videos below.

Continue reading “3D Printed Tourbillon Clock”

ATtiny Does 170×240 VGA With 8 Colors

The Arduino is a popular microcontroller platform for getting stuff done quickly: it’s widely available, there’s a wealth of online resources, and it’s a ready-to-use prototyping platform. On the opposite end of the spectrum, if you want to enjoy programming every bit of the microcontroller’s flash ROM, you can start with an arbitrarily tight resource constraint and see how far you can push it. [lucas][Radical Brad]’s demo that can output VGA and stereo audio on an eight-pin DIP microcontroller is a little bit more amazing than just blinking an LED.

[lucas][RB] is using an ATtiny85, the larger of the ATtiny series of microcontrollers. After connecting the required clock signal to the microcontroller to get the 25.175 Mhz signal required by VGA, he was left with only four pins to handle the four-colors and stereo audio. This is accomplished essentially by sending audio out at a time when the VGA monitor wouldn’t be expecting a signal (and [lucas][Rad Brad] does a great job explaining this process on his project page). He programmed the video core in assembly which helps to optimize the program, and only used passive components aside from the clock and the microcontroller.

Be sure to check out the video after the break to see how a processor with only 512 bytes of RAM can output an image that would require over 40 KB. It’s a true testament to how far you can push these processors if you’re determined. We’ve also seen these chips do over-the-air NTSC, bluetooth, and even Ethernet.

Continue reading “ATtiny Does 170×240 VGA With 8 Colors”