Don’t Miss Watching this Solar Eclipse High Altitude Balloon Online

[Dan Julio] let us know about an exciting project that he and his team are working on at the Solid State Depot Makerspace in Boulder: the Solar Eclipse High Altitude Balloon. Weighing in at 1 kg and bristling with a variety of cameras, the balloon aims to catch whatever images are able to be had during the solar eclipse. The balloon’s position should be trackable on the web during its flight, and some downloaded images should be available as well. Links for all of that are available from the project’s page.

High altitude balloons are getting more common as a platform for gathering data and doing experiments; an embedded data recorder for balloons was even an entry for the 2016 Hackaday Prize.

If all goes well and the balloon is able to be recovered, better images and video will follow. If not, then at least a post-mortem of what the team thinks went wrong will be posted. Launch time in Wyoming is approximately 10:40 am Mountain Time (UTC -07:00) Mountain Daylight Time (UTC -06:00) on Aug 21 2017, so set your alarm!

Living High-Altitude Balloon

High-altitude balloons are used to perform experiments in “near space” at 60,000-120,000 ft. (18000-36000m). However, conditions at such altitude are not particularly friendly and balloons have to compete with ultraviolet radiation, bad weather and the troubles of long distance communication. The trick is to send up a live entity to make repairs as needed. A group of students from Stanford University and Brown University repurposed nature in their solution. Enter Bioballoon: a living high-altitude research balloon.

Instead of using inorganic materials, the Stanford-Brown International Genetically Engineered Machine (iGEM) team designed microbes that grow the components required to build various tools and structures with the hope of making sustained space research feasible. Being made of living material, Bioballoon can be grown and re-grown with the same bacteria, lowering the cost of manufacturing and improving repeatability.

Bioballoon is engineered to be modular, with different strains of bacteria satisfying different requirements. One strain of bacteria has been modified to produce hydrogen in order to inflate the balloon while the balloon itself is made of a natural Kevlar-latex mix created by other cells. Additionally, the team is using Melanin, the molecule responsible for skin color and our personal UV protection to introduce native UV resistance into the balloon’s structure. And, while the team won’t be deploying a glider, they’ve designed biological thermometers and small molecule sensors that can be grown on the balloon’s surface. They don’t have any logging functionality yet, but these cellular hacks could amalgamate as a novel scientific instrument: cheap, light and durable.

Living things too organic for your taste? Don’t worry, we’ve got some balloons that won’t grow on you.

Continue reading “Living High-Altitude Balloon”

Mexican Highschoolers Launch 30 High Altitude Balloons

No matter whether you call them “picosatellites” or “high altitude balloons” or “spaceblimps”, launching your own electronics package into the air, collecting some high-altitude photos and data, and then picking the thing back up is a lot of fun. It’s also educational and inspirational. We’re guessing that 264 students from 30 high schools in Aguascalientes Mexico have new background screens on their laptops today thanks to the CatSat program (translated here by robots, and there’s also a video to check out below).

Continue reading “Mexican Highschoolers Launch 30 High Altitude Balloons”

New Record for Balloon: Duration Aloft

High-altitude balloon flights have become somewhat of a known quantity these days. Although it’s still a fun project that’ll bring your hackerspace together on a complex challenge, after the first balloon or two, everyone starts to wonder”what next?”. Higher? Faster? Further? Cheaper? More science? There are a variety of different challenges out there.

A group of Stanford students just bagged a new record, longest time in flight, with their SSI-41 mission. In addition to flying from coast to coast, on a track that went waaaay up into Canadian airspace, they logged 79 hours of flight time.

altvstimeThe secret? Val-Bal. A “valve ballast” gas venting valve and ballast dispenser system that kept the balloon from going too high (and popping) or dropping back down to earth. The balance seems to have worked nearly perfectly — check the altitude profile graph. We’d love to see more details about this system. If anyone out there on the team does a writeup, let us know?

There are as many interesting ways to get into high-altitude ballooning as there are hackers. We love the extreme economy of the Pico Space Balloon project, which has gone around the world (twice!) on a solar-powered party balloon. And we’ll give both the best-name and ridiculous-concept awards to the Tetroon. But for now, most time aloft goes to the Stanford team. Congrats!

[via the Bangor Daily News, if you can believe that]

Hackaday Links: January 24, 2016

The RepRap wiki was spammed this week. Everything is fine now, but I feel I should call attention to the fact that the RepRap wiki needs some people to contribute, organize, and maintain everything. The wikis for obscure anime shows are better than the RepRap wiki, so if you’re looking to contribute to an important open source project, there ‘ya go.

The 200cc, 5.5HP, 4-stroke OHV Honda GX200 engine is found in a whole lot of tools, and is a fantastic power plant to build a go-kart around. It also costs about $350. There are clones of this engine available direct from China for about $100. Here’s how you add a turbo to one of these clone engines.

Freescale makes some pretty cool sensors and [Juan Ignacio Cerrudo] figured they needed breakout boards. He has some boards for a low-power three-axis accelerometer, an accelerometer and magnetometer, and a pressure sensor.

The Tektronix TDS744A is an older but still extremely capable 500MHz, 2Gsps, 4-channel scope. You can upgrade it to the 1GHz TDS784A by desoldering a few resistors. Very cool if you’re looking for a cheap-ish 1GHz scope.

[TheBackyardScientist] hung out with some cub scouts a few weekends ago and launched a high altitude balloon over Florida. The payload included a game camera, APRS tracker, GoPro, and a few other bits and bobs. The balloon reached 106,000 feet and landed only a few miles from Cape Canaveral.

Big RC planes – UAVs especially – are a pain to launch. Flying wings above a certain size are just dangerous to launch by hand, and landing gear is heavy and for the most part unnecessary. What’s the next best solution? A trebuchet, of course. It mounts on a car and is able to give a UAV a little bit of altitude and some speed. A pretty good idea that could be easily implemented with some load-bearing PVC pipe.

Everybody likes the Game of Life, so here’s one built with a 6502. It’s built around a Western Design Center 65c816 board we’ve seen before, nine MAX7219 LED controllers mapped to the VIA, and nine 8×8 LED matrix displays. Here’s a video of it in action.

About a month ago, a search of AliExpress turned up Apple’s A8 CPU. I bought one. Here’s what I got. It’s a stupidly small pitch BGA, and I don’t have a datasheet. What am I going to do with it? Make a non-functioning board with a few ports, resistors, no traces, and the A8 chip planted square in the middle.

Pico Space Balloon Circumnavigates the Globe, Twice

We’ve reported on “space” balloons before. Heck, some of us have even launched a few. Usually they go way up in the air, take some cool pictures, and land within driving (and retrieving) distance the same afternoon. You get often amazing photos and bragging rights that you took them for the low, low price of a really big helium balloon and a fill.

But what if you shrunk everything down? Over the last few years, [Andy, VK3YT] has been launching ever smaller and lighter balloons with very low power ham radio payloads. So no camera and no photos, but the payback is that he’s launching payloads that weigh around thirteen grams complete with GPS, radio, solar cell, and batteries. They can stay up for weeks and go really far. We’d love to see some construction details beyond the minimalistic “Solar powered party balloon, 25mW TX”. But that about sums it up.

Continue reading “Pico Space Balloon Circumnavigates the Globe, Twice”

Ask Hackaday: Quadcopter in Near Space?

Your mission, should you choose to accept it, is to send a quadcopter to near space and return it safely to the Earth. Getting it there is not that difficult. In fact, you can get pretty much anything you want to near space with a high altitude weather balloon. Getting it back on the ground in one piece is a whole other ballgame.

Why does someone need to do this? Well, it appears the ESA’s StarTiger team is taking a card out of NASA’s book and wants to use a Sky Crane to soft land a rover on Mars. But instead of using rockets to hold the crane steady in the Martian sky, they want to use…you guessed it, a quadcopter. They’re calling it the Dropter.

quadcopter on mars

At first glance, there seems to be a lot wrong with this approach. The atmosphere on Mars is about 100 times less dense than the Earth’s atmosphere at sea level. How do props operate in these conditions? Testing would need to be done of course, and the Earth’s upper atmosphere is the perfect place to carry out such testing. At 100,000 feet, the density of the stratosphere is about the same as that of the Martian surface atmosphere. AND 100,000 feet is prime high altitude balloon territory.  Not to mention the gravity on Mars is about 38% of Earth’s gravity, meaning a 5.5 pound model on Earth could accurately represent a 15 pound model on Mars.

With all of these facts taken into consideration, one can conclude that realistic testing of a scale model Martian quadcopter is within the grasp of the hacker community. We’ve seen some work on high altitude drones before, but never a quadcopter.

Now it’s your turn to do something no one has ever done before. Think you got what it takes to pull such a project off? Let us know what your approach to the challenge would be in the comments.

Continue reading “Ask Hackaday: Quadcopter in Near Space?”