Hack Club OnBoard

Hack Club Grants Encourage Open Source PCB Designs By Teens

[Hack Club] is a nonprofit network of coder and maker clubs for teenage high school students around the world. With an impressive reach boasting clubs in about 400 schools, they serve approximately 10,000 students. Their OnBoard program asserts, “Circuit boards are magical. You design one, we’ll print it!”

Any teenage high school student can apply for a [Hack Club] OnBoard Grant to have their Printed Circuit Board design fabricated into real hardware.  The process starts by designing a PCB using any tool that can generate Gerber files. The student then publishes their design on GitHub and submits the Gerber files to a PCB manufacturer.

A screenshot from the board house showing the completed design upload and production cost is the main requirement of the grant application.  If approved, the grant provides up to $100 to cover PCB manufacturing costs.

OnBoard encourages collaboration, community, and friends. Designers can share their projects and progress with [Hack Club] teens around the world. Those who are working on, or have completed, their own circuit board designs can share support and encouragement with their peers.

Example hardware projects from [Hack Club] include Sprig, an open-source handheld game console based on the Raspberry Pi Pico microcontroller.  Teen makers can explore the example OnBoard projects and then it’s… three, two, one, go!

TeraByte InfraRed Delivery (TBIRD)

NASA Team Sets New Space-to-Ground Laser Communication Record

[NASA] and a team of partners has demonstrated a space-to-ground laser communication system operating at a record breaking 200 gigabit per second (Gbps) data rate. The TeraByte InfraRed Delivery (TBIRD) satellite payload was designed and built by [MIT Lincoln Laboratory]. The record of the highest data rate ever achieved by a space-to-Earth optical communication link surpasses the 100 Gbps record set by the same team in June 2022.

TBIRD makes passes over an ground station having a duration of about six-minutes. During that period, multiple terabytes of data can be downlinked. Each terabyte contains the equivalent of about 500 hours of high-definition video. The TBIRD communication system transmits information using modulated laser light waves. Traditionally, radio waves have been the medium of choice for space communications. Radio waves transmit data through space using similar circuits and systems to those employed by terrestrial radio systems such as WiFi, broadcast radio, and cellular telephony. Optical communication systems can generally achieve higher data rates, lower loses, and operate with higher efficiency than radio frequency systems. Continue reading “NASA Team Sets New Space-to-Ground Laser Communication Record”

Hackaday Prize 2023: Scratch Made 8-Bit Educational Computer

To demonstrate the functionality of an 8-bit computer processor at a very basic level,  [Mazen Gomaa] assembled a Homemade 8-Bit Educational Computer using common CMOS logic chips, a handful of prototyping boards, and an impressive number of carefully connected wires. [Mazen] was inspired by Ben Eater’s 8-bit TTL Breadboard Computer but opted to solder the chips and other components onto proto boards instead of using solderless breadboards.

The 8-Bit computer is based on the Simple-As-Possible (SAP) computer architecture described in the book “Digital Computer Electronics” by [Paul Malvino] and [Jerald Brown]. These useful educational examples demonstrate data, computer logic, and even programming in the context of basic electronic components. Tinkering with such simple computers provides a real “zeros and ones” exposure to computation.

[Mazen] added some additional features and functionality to his computer, including an instruction keypad, an address keypad, a dot matrix memory data viewer, a Schottky diode matrix ROM, and a boot loader that initializes the RAM with data stored in ROM. With clock speeds up to 100 Hz, the computer consumes around 300-500 mA of current.

Future plans include expanding the memory and instruction set from the present 128-bit (8×16) RAM, 64-bit (8×8) ROM, and a set of ten instructions.  Already, this project is a great addition to an ever-growing catalog of homemade solderless breadboard computers, LCD snake games, and VGA video cards.

Continue reading “Hackaday Prize 2023: Scratch Made 8-Bit Educational Computer”

Oscillon by Ben F. Laposky

Early Computer Art From The 1950s And 1960s

Modern day computer artist, [Amy Goodchild] surveys a history of Early Computer Art from the 1950s and 1960s. With so much attention presently focused on AI-generated artwork, we should remember that computers have been used to created art for many decades.

Our story begins in 1950 when Ben Laposky started using long exposure photography of cathode ray oscilloscopes to record moving signals generated by electronic circuits. In 1953, Gordon Pask developed the electromechanical MusiColor system. MusiColor empowered musicians to control visual elements including lights, patterns, and motorized color wheels using sound from their instruments. The musicians could interact with the system in real-time, audio-visual jam sessions.

In the early 1960s, BEFLIX (derived form Bell Flix) was developed by Ken Knowlton at Bell Labs as a programming language for generating video animations. The Graphic 1 computer featuring a light pen input device was also developed at Bell Labs. Around the same timeframe, IBM introduced novel visualization technology in the IBM 2250 graphics display for its System/360 computer. The 1967 IBM promotional film Frontiers in Computer Graphics demonstrates the capabilities of the system.

Continue reading “Early Computer Art From The 1950s And 1960s”

DSP PAW Hardware Platform

Hackaday Prize 2023: Learn DSP With The Portable All-in-One Workstation

Learning Digital Signal Processing (DSP) techniques traditionally involves working through a good bit of mathematics and signal theory. To promote a hands-on approach, [Clyne] developed the DSP PAW (Portable All-in-one Workstation). DSP PAW hardware and software provide a complete learning environment for any computer where DSP algorithms can be entered as C++ code through an Arduino-like IDE.

Continue reading “Hackaday Prize 2023: Learn DSP With The Portable All-in-One Workstation”

Artemis II Laser Communications

Artemis II Will Phone Home From The Moon Using Laser Beams

[NASA] Astronauts will be testing the Orion Artemis II Optical Communications System (O2O) to transmit live, 4K ultra-high-definition video back to Earth from the Moon. The system will also support communication of images, voice, control channels, and enhanced science data.

Aboard Orion, the space terminal includes an optical module, a modem, and a control system.  The optical module features a four inch telescope on a dual gimbal mount. The modem modulates digital information onto laser beams for transmission back to Earth, and demodulates data from laser beams recieved from Earth. The control system interfaces with avionic systems aboard Orin to control and point the communications telescope.

On Earth, facilities including the Jet Propulsion Laboratory and the White Sands Complex will maintain high-bandwidth optical communication links with Orion. Information received from Orion will be relayed to mission operations, scientists, and researchers.

NASA’s Laser Communications Relay Demonstration (LCRD) showcases the benefits of optical communications.  Traditionally, missions relied upon radio communication, but improved technology will better serve space missions that generate and collect ever-increasing quantities of data. Optical communication solutions can provide 10 to 100 times the bandwidth of radio frequency systems. Other improvements may include increased link distances, higher efficiency, reduced interference, improved security, and reductions in size and weight. Our Brief History of Optical Communication outlines many of these advantages.

Continue reading “Artemis II Will Phone Home From The Moon Using Laser Beams”

Liquid Neural Networks Do More With Less

[Ramin Hasani] and colleague [Mathias Lechner] have been working with a new type of Artificial Neural Network called Liquid Neural Networks, and presented some of the exciting results at a recent TEDxMIT.

Liquid neural networks are inspired by biological neurons to implement algorithms that remain adaptable even after training. [Hasani] demonstrates a machine vision system that steers a car to perform lane keeping with the use of a liquid neural network. The system performs quite well using only 19 neurons, which is profoundly fewer than the typically large model intelligence systems we’ve come to expect. Furthermore, an attention map helps us visualize that the system seems to attend to particular aspects of the visual field quite similar to a human driver’s behavior.


Mathias Lechner and Ramin Hasani
[Mathias Lechner] and [Ramin Hasani]
The typical scaling law of neural networks suggests that accuracy is improved with larger models, which is to say, more neurons. Liquid neural networks may break this law to show that scale is not the whole story. A smaller model can be computed more efficiently. Also, a compact model can improve accountability since decision activity is more readily located within the network. Surprisingly though, liquid neural network performance can also improve generalization, robustness, and fairness.

A liquid neural network can implement synaptic weights using nonlinear probabilities instead of simple scalar values. The synaptic connections and response times can adapt based on sensory inputs to more flexibly react to perturbations in the natural environment.

We should probably expect to see the operational gap between biological neural networks and artificial neural networks continue to close and blur. We’ve previously presented on wetware examples of building neural networks with actual neurons and ever advancing brain-computer interfaces.

Continue reading “Liquid Neural Networks Do More With Less”