A Helmet to Make Daft Punk Jealous

If you’ve been paying even a little bit of attention to popular music over the past couple of decades, then you’re surely aware of the electronic music duo Daft Punk. Of course, their success isn’t just a result of their music – a big part of it is also their iconic costumes and persona. What makes those costumes iconic is the robot helmets that the musicians wear. What initially began as a desire to hide their faces ended up becoming their most distinctive trait.

The helmets that the duo wears have changed over the years, but an homage helmet created by [Mike Michelena] puts them all to shame. It maintains the aesthetic elements of Daft Punk’s helmets, while improving on the tech aspects in every way. 210 RGB LEDs, a microprocessor, and 14 amp hours worth of battery give it complete customizability and 5 hours of use.

Continue reading “A Helmet to Make Daft Punk Jealous”

Rita’s Dolls Probably Live Better Than You Do

If it wasn’t for the weird Dutch-Norwegian techno you’d presumably have to listen to forever, [Gianni B.]’s doll house for his daughter, [Rita] makes living in a Barbie World seem like a worthwhile endeavor. True to modern form, it’s got LED lighting. It’s got IoT. It’s got an app and an elevator. It even has a tiny, working, miniature television.

It all started with a Christmas wish. [Rita] could no longer stand to bear the thought of her Barbie dolls living a homeless lifestyle on her floor, begging passing toys for enough monopoly money to buy a sock to sleep under. However, when [Gianni] visited the usual suspects to purchase a dollhouse he found them disappointing and expensive.

So, going with the traditional collaborating-with-Santa ruse, he and his family had the pleasure of collaborating on a dollhouse development project. Each room is lit by four ultra bright LEDs. There is an elevator that’s controlled by an H-bridge module, modified to have electronic braking. [Rita] doesn’t own a Dr. Barbie yet, so safety is paramount.

The brain of the home automation is a PIC micro with a Bluetooth module. He wrote some code for it, available here. He also went an extra step and used MIT’s scratch to make an app interface for the dollhouse. You can see it work in the video after the break. The last little hack was the TV. An old arduino, an SD Card shield, and a tiny 2.4 inch TFT combine to make what’s essentially a tiny digital picture frame.

His daughter’s are overjoyed with the elevation of their doll’s economic class and a proud father even got to show it off at a Maker Faire. Very nice!

Continue reading “Rita’s Dolls Probably Live Better Than You Do”

Quick Hack Creates A Visual Beep Alarm

Sometimes a simple modification is all it takes to get something just the way you want it. The Ikea LÖTTORP clock/thermometer/timer caught [Mansour Behabadi’s] eye. The LÖTTORP  has four functions based on its orientation. [Mansour] loved the orientation feature, but hated the clock’s shrill beeping alert. Visual beeps or alarms can be handy when working with headphones or in a loud environment. With this in mind [Mansour] decided to crack his LÖTTORP open and rewire it to produce a visual beep for the timer function.

The clock is backlit, so [Behabadi] decided to use the backlight for his visual beep. Once the inside was exposed, [Behabadi] noticed that the buzzer’s positive terminal was wired to the red LED anode — a clever design choice, since the red LED is only used with the clock function. Simply removing the buzzer and soldering its terminal to the noticeable green LED provided the desired effect.

We meant it when we said he cracked it open. The screws were hidden behind the front plate, so the handyman’s secret weapon helped in reassembling the clock after this quick hack.

We’ve featured plenty of classy, unique, and ingenious clocks on Hackaday, so this modification is in good company.

Hackaday Prize Entry: Cheap Visible Light Communication

[Jovan] is very excited about the possibilities presented by Visible Light Communication, or VLC. It’s exciting and new. His opening paragraphs is filled with so many networking acronyms that VLC could be used for, our browser search history now looks like we’re trying to learn english without any vowels.

In lots of ways he has good reason to be excited. We all know that IR can communicate quite a bit, but when you’re clever about frequency and color and throw in some polarizers with a mix of clever algorithms for good measure you can get some very high bandwidth communication with anything in line of site. You can do it for low power, and best of all, there are no pesky regulations to stand in your way.

He wants to build a system that could be used for a PAN (Personal Area Network). To do this he’ll have to figure out a way to build the system inexpensively and using less than a watt of power. The project page is full of interesting experiments and quite a few thesis on the subject of LEDs.

For example, he’s done work on how LEDs respond to polarization. He’s tested how fast an LED can actually turn on and off while still being able to detect the change. He’s also done a lot of work characterizing the kind of light that an LED emits. We don’t know if he’ll succeed yet, but we like the interesting work he’s doing to get there.

Altitude Controlled LED Jacket Changes Color as You Climb

When your climbing gym throws a “glow in the dark” party, how can you stand out? For [Martijn], the answer was obvious. He made a jacket adorned with 32 WS2812 addressable LEDs whose color is addressable depending on the altitude to which he has climbed.
The build is centered on an Arduino Pro Mini with a barometric sensor and an NRF24L01 for radio comms. A pair of pockets contain AA batteries for power, and he’s all set to climb.
A base station Arduino with the same set-up transmits an up-to-the-minute reading for ground level temperature, which is compared to the local reading from the barometric sensor and used to calculate a new color for the LEDs. A Kalman filter deals with noise on the pressure reading to assure a stable result. Arduino sketches for both ends are provided on the Hackaday.io page linked above.
The LEDs are mounted on the jacket’s stretch fabric with an excess of  wire behind the scenes to cater for the stretch. You can see the resulting garment in the short YouTube video below the break.

Continue reading “Altitude Controlled LED Jacket Changes Color as You Climb”

Hacklet 123 – Watches

Time and tide wait for no man. Chaucer may be right, but a man (or woman) wearing a watch can get ahead of time before it sneaks up on them. People aren’t ever satisfied with just the time though. They want the date, the phase of the moon. [Woz] summed it up pretty well when he said “I want the entire smartphone, the entire Internet, on my wrist”.   Hackers love watches too, which means there are plenty of watch projects out there. Some of them even tell time. This week we’re looking at some of the best watch projects on Hackaday.io!

chronioWe start with [Max.K] and Chronio. You might think Chronio looks a bit like the Pebble Time, and you’d be right! [Max] based his design heavily on Pebble’s case design. Pebble even has their CAD files on GitHub, which helped [Max] with his modified, 3D printed version. Chronio is Arduino based, using an ATmega328p microcontroller with the Arduino bootloader. The display is Sharp’s 96×96 pixel Memory LCD. A DS3231 keeps the time accurate, and provides a free temperature sensor. The entire watch is powered by a CR2025 battery. Running a 20uA sleep current, [Max] estimates this watch will last about 6 months on a single battery.

neopixel-pocketNext we have [Joshua Snyder] and Neopixel pocket watch. Who said a watch has to go on your wrist? [Joshua] brings some steampunk style to the party. His watch uses an Adafruit 12 NeoPixel ring to tell time. Red, blue, and green LEDS represent the hour, minute and second hands. The watch is controlled by an ESP8266. The time is set via WiFi. Between the LEDs and the power-hungry ESP8266, this isn’t exactly a low-power design. A 150mAh LiPo battery should keep things running for a few hours though. That’s more than enough time to make a splash at the next hackerspace event.

pi-watchNext up is [ipaq3115] and The Pi Watch. Round smartwatches have created a market for round LCD screens. These screens have started to trickle down into the hacker/maker market. [ipaq3115] got his hands on one, and had to design something cool with it. The Pi Watch isn’t powered by a Raspberry Pi, but a Teensy 3.1. [ipaq3115] included the Freescale/NXP Kinetis processor and MINI54 bootloader chip on his own custom board. He used the Teensy’s analog inputs to create his own 10 element capacitive touch ring. This watch even has a LSM303  magnetometer/accelerometer. All this power comes at a cost though. It takes a 480 mAh LiPo battery to keep The Pi Watch Ticking.

vikasFinally we have [Vikas V] and ScrolLED watch. Who says a watch has to have an LCD? [Vikas V] wanted a scrolling LED display on his wrist, so he built his own. An Atmel ATmega88V-10AU controls a 16×5 charlieplexed LED array. [Vikas] included a character font with many of the ASCII symbols in flash, so this watch can display messages. Power comes from a CR2032 watch battery in a custom PCB mounted holder. [Vikas] biggest issue so far has been light leaks from LED to LED. He’s considering mounting the array on the bottom of the watch. Shining the LEDs up through holes in the PCB would definitely help with the light leakage.

If you want to see more watch projects, check out our new watch projects list. Notice a project I might have missed? Don’t be shy, just drop me a message on Hackaday.io. That’s it for this week’s Hacklet, As always, see you next week. Same hack time, same hack channel, bringing you the best of Hackaday.io!

10,000 Lumen Sunrise Lamp Curses the Darkness

Some of us need a bit of help to get up in the mornings. This can come in the form of a sunrise lamp, which simulates the light of the sunrise to fool our poor sleep-deprived brains into waking up in the depths of winter. [Lincoln Johnson] found the ones he tried were not bright enough to wake him, so he decided to build his own: a 10,000-lumen monster that can wake him up from across the room.

It uses a lot of LEDS: 5 meters of 5630 LED strip, which pulls a circuit bending 72 watts when running at full blast. This monstrosity is powered by an Arduino Pro, which is programmed to slowly increase the brightness over a period of 30 minutes, thus simulating the sunrise. It uses PWM control to fade the LEDs, and also includes a dot matrix display to show the time. Honestly, if you are able to sleep through this thing blasting your eyes, you are probably dead.