11,000 Volt Jacob’s Ladder Sounds Like a Lightsaber

In the high-voltage world, a Jacob’s ladder is truly a sight to behold. They are often associated with mad scientist labs, due to both the awesome visual display and the sound that they make. A Jacob’s ladder is typically very simple. You need a high voltage electricity source and two bare wires. The wires are placed next to each other, almost in parallel. They form a slight “V” shape and are placed vertically. The system acts essentially as a short-circuit. The voltage is high enough to break through the air at the point where the wires are nearest to each other. The air rises as it heats up, moving the current path along with it. The result is the arc slowly raising upwards, extending in length. The sound also lowers in frequency as the arc gets longer, and once [Gristc] tuned his system just right the sound reminds us of the Holy Trilogy.

We’ve seen these made in the past with other types of transformers that typically put out around 15,000 Volts at 30mA. In this case, [Gristc] supersized the design using a much beefier transformer that puts out 11,000 Volts at 300mA. He runs the output from the transformer through eight microwave oven capacitors as a ballast. He says that without this, the system will immediately trip the circuit breakers in his house.

In the demo video below, you can see just how large the arc is. It appears to get about 10 inches long before breaking with a sound different from any Jacob’s ladders we’ve seen in the past as well. Continue reading “11,000 Volt Jacob’s Ladder Sounds Like a Lightsaber”

Powered Double Pendulum is a Chaotic Display

If you’ve never seen a double pendulum before, it’s basically just a pendulum with another pendulum attached to the end. You might not think that’s anything special, but these devices can exhibit extremely chaotic behavior if enough energy is put into the system. The result is often a display that draws attention. [David] wanted to build his own double pendulum display, but he wanted to make it drive itself. The result is a powered double pendulum.

There aren’t many build details here, but the device is simple enough that we can deduce how it works from the demonstration video. It’s broken into two main pieces; the frame and the pendulum. The frame appears to be made mostly from wood. The front plate is made of three layers sandwiched together. A slot is cut out of the middle to allow a rail to slide up and down linearly. The rail is designed in such a way that it fits between the outer layers of the front plate like a track.

The pendulum is attached to the linear rail. The rail moves up and down and puts energy into the pendulum. This causes the pendulum to actually move and generate the chaotic behavior. The rail slides up and down thanks to an electric motor mounted to the base. The mechanics work similar to a piston on a crankshaft. The motor looks as though it is mounted to a wooden bracket that was cut with precision on a laser cutter. The final product works well, though it is a bit noisy. We also wonder if the system would be even more fun to watch if the rotation of the motor had an element of randomness added to it. Or he could always attach a paint sprayer to the end. Continue reading “Powered Double Pendulum is a Chaotic Display”

Ball Bearing Motor Rolls for Reasons Unknown

[RimstarOrg] has brought us an oldie but goodie this week. He’s built a ball bearing motor, a design which has been causing engineers and scientists to squabble for decades. [RimstarOrg] used a microwave oven transformer with a 70 turn primary coil and a single turn secondary coil to create a low voltage, high current AC power supply. Needless to say, there’s a real risk of fire or electrocution with a setup like this, so be careful if you try this one at home. [RimstarOrg] then built the motor itself. He de-greased two ball bearings then installed them on a metal shaft along with a wooden flywheel. The entire assembly was then mounted on a board so the wheel could spin freely. Two copper straps hold the bearings to the board. Finally, the transformer is wired into the copper straps. In this configuration, the current will flow through the outer race of one bearing, through the balls, and into the inner race. The current then passes down the axle and passes through the other bearing. There is very little resistance in this circuit, so it can only be powered on for a few seconds at a time before things start to melt down.

Continue reading “Ball Bearing Motor Rolls for Reasons Unknown”

Fun with LED matrix and mouse

fun-with-LED-matrix-and-mouse

[Brad] just acquired a 32×32 RGB LED matrix and he jumped right into the deep end with his first project. To try out his skills on the device he used an Arduino to drive a slew of pixels with bouncing-ball physics.

The demo starts off with a hail storm of multi-colored falling pixels. In the center of the storm is the cursor, which he controls with a PS2 mouse. That happens to be a ball mouse which makes sense as we don’t remember having seen any optical mice as of late that weren’t USB. The PS2 protocol is easy to read using a microcontroller; more about that in [Brad’s] project write up.

By holding down the left mouse button he can draw persistent pixels on the screen. The falling balls then interact by bouncing off of the obstacles. The image above shows a frame on three sides of the screen which has trapped the pixels near the bottom. He can also erase pixels, which has the effect of draining the trapped balls like a hole in a bucket of water. Neat!

Bouncing ball physics are fun to experiment with. Here’s one being driven by an analog computer.

Continue reading “Fun with LED matrix and mouse”

Variable frequency laser using shaken ball bearings

Lasers normally emit only one color, or frequency of light. This is true for laser pointers or the laser diodes in a DVD player. [Kevin] caught wind of state-of-the-art research into making variable wavelength lasers using shaken grains of metal and decided to build his own.

When [Kevin] read a NewScientist blog post on building variable frequency lasers built with shaken metallic grains, he knew he had to build on. He dug up the arxiv article and realized the experimental setup was fairly simple and easily achievable with a bit of home engineering.

[Kevin]’s device works by taking thousands of small ball bearings and putting them in a small vial with Rodamine B laser dye. To vibrate the particles in the dye, [Kevin] mounted his container of dye and bearings on an audio speaker and used a frequency generator to shake the ball bearings.

When a small 30mW green laser shines through the vial of ball bearings and dye, the laser changes color to a very bright yellow. By vibrating the vial at 35 to 45 Hz, [Kevin] can change the frequency, or color of the laser.

[Kevin] can only alter the frequency of the laser by about 30 nm, or about the same color change as a reddish-orange and an orangish-yellow. Still, it’s pretty amazing that [Kevin] was able to do state-of-the-art physics research at home.

Sadly, we couldn’t find any videos of [Kevin]’s variable frequency laser. If you can find one send it in to the tip line and we’ll update this post.

Flying Batman is a load of bull

Batman’s ability to fly is a falsehood. Or at least so says science. We didn’t know science was into disproving super-hero movies (that’s a deep well to drink from) but to each his own. But back in December the Journal of Physics Special Topics took on the subject with their scholarly paper entitled Trajectory of a Falling Batman. The equations presented in the two-page white paper may be above your head, but the concepts are not.

It’s not that Batman can’t fly in the way explained in the film. It’s that he can’t land without great bodily harm. By analyzing the cape in this frame of the film, researchers used Batman’s body height to establish wing span and area. The numbers aren’t good. Top speed will reach about 110 km/h with a sustained velocity of 80 km/h. That’s 80 mph at top speed and just under 50 mph when he comes in for a landing.

Oh Batman, how you’ve let us all down. If you liked this paper, you should dig through the archives. We always wondered if [Bruce Willis] could have actually saved the world from an asteroid.

[via Dvice]