ATtiny Hacks: Infrared Guidance And Navigation

After [trandi] got his hands on a cheap R/C helicopter he realized the difficulties in actually flying a remote control helicopter. Instead of giving up, he decided to reverse-engineer the infrared protocol and then build a decoder around an ATtiny that would send commands to another microcontroller using a serial connection.

The remote’s communications protocol was decoded with the help of a Freeduino and an IR remote analysis sketch [trandi] found on the Arduino website. After importing the data into Gnuplot, there was enough data to write a sketch in Processing to visualize the infrared pulses.

After figuring out the protocol of his remote control, [trandi] built a tiny circuit to decrypt the IR commands and send them over a serial link to another microcontroller. The ATtiny45-based build doesn’t take up very much space on the perfboard making it very easy to mount on any robot of his choosing. He ended up connecting it to a Lego NTX brick allowing him to use the helicopter remote with any Lego build he can dream up.

[trandi] invested a lot of work around a cheap remote control; if the remote broke, all would be for naught. This was remedied with an IR beacon that replicates the function of the remote. The beacon is based on an ATtiny13 and can serve as a stand-alone beacon for autonomous robots or can accept serial commands from a computer. Not a bad build if you ask us.

Large Scale Tetris Game Controlled With DDR Pads

led_tetris_using_ddr_pads

Even though Tetris came to the US 25 long years ago, it never fails to entertain. Whatever it is that gives the game such lasting power is a mystery to us, but we’re always interested in seeing fresh takes on the classic game.

MIT students [Leah Alpert] and [Russell Cohen] tweaked Tetris a bit to get players off the couch and literally thinking on their feet. The game boards were constructed using RGB LEDs installed in laser-cut acrylic tubes, arranged in a pair of large 6 foot tall floor standing matrices.

Game play progresses as you would expect, with two players battling head to head to achieve the high score, while simultaneously sabotaging their opponent. Instead of controllers however, each player stands on a Dance Dance Revolution mat, manipulating their game pieces with their feet.

While the DDR pads aren’t exactly a Kinect controller, we have no doubt that playing Tetris this way is incredibly fun – we would certainly install a pair of these boards in our game room without a second thought.

Thanks to everyone who sent this in!

Continue reading “Large Scale Tetris Game Controlled With DDR Pads”

ATtiny Hacks: SerialCouple – A Standalone Thermocouple ADC Board With Serial Out

ATtiny Hacks Theme Banner

serialcouple_thermocouple_adc_board

Since we are in the midst of featuring a wide assortment of ATtiny hacks, [Kenneth] wrote in to share a project he has been developing over the last few months, the SerialCouple.

Most all development platforms have the ability to function as an analog to digital converter, but you don’t always need a full-featured board when all you require is serial output for your computer. With his SerialCouple board, [Kenneth] is trying to take some complexity out of the process by building a standalone thermocouple ADC board. The SerialCouple is designed to take analog readings from a thermocouple, converting them to digital values that can be sent to any device over a serial connection. The grunt work is done by a Maxim MAX31855 chip, which converts the thermocouple’s analog data to digital temperature readings. The digital representation of the temperature is then retrieved by the on-board ATtiny2313, which sends the data out the serial port.

If a standalone thermocouple ADC board is something you’ve been looking for, be sure to swing by his site to take a look at his code and schematics.

Continue reading to see a short video demo that explains how the SerialCouple works.

Continue reading “ATtiny Hacks: SerialCouple – A Standalone Thermocouple ADC Board With Serial Out”

Burning Man 2011: Duane Flatmo’s El Pulpo Mecanico

I had a lot of fun at Burning Man 2011, from the sculpture to the crazy art to the insane kinetic vehicles, the whole experience was something completely out of this world. With near 50,000 people out there in the Nevada desert it is impossible to see and experience everything the festival has to offer. I am positive there are several mind blowing sculptures or vehicles that I simply missed. That said, I have yet to hear a single conversation about Burning Man 2011 that does not at least mention [Duane Flatmo]’s El Pulpo Mechanico.

Continue reading “Burning Man 2011: Duane Flatmo’s El Pulpo Mecanico”

Why Wasn’t This Magnetic Cello Made In The 70’s?

[magnetovore] made himself an electronic cello. Instead of pulling a few cello samples off of an SD card, he did it the old school analog way. The finished build is really impressive and leaves us wondering why we haven’t seen anything like this before.

[magnetovore] uses a permanent magnet to play each ‘string’. A lot of details are in this post and [magnetovore]’s provisional patent (PDF warning). From what we can gather, each string is a resistive ribbon sensor connected to a voltage controlled oscillator. The output of the VCO is sent to a variable gain amplifier that is controlled by a coil of wire and the magnetic ‘bow’.

From the video (after the break), [magnetovore] already has an amazing reproduction of the cello sound. It’s a bit electronic on the lowest parts of the C string, but with a little bit of processing it could definitely pass for an acoustic instrument. We’re left wondering why we haven’t seen anything like this cello before. VCOs and VGAs were the bread and butter of the old Moogs and even the ancient ondes martenot. Ribbon controllers were being attached to electronic instruments back in the 50’s, so we’re really at a loss on why a magnetic cello is new to us. If any Hack A Day readers have seen anything like this before, leave a message in the comments.

Continue reading “Why Wasn’t This Magnetic Cello Made In The 70’s?”

Tracking Commercial Aircraft With Salvaged Electronics

ads-b_air_traffic_tracking_station

Early last year, [Edward] started work on an aircraft tracking system using components from old electronics he had sitting around the house. As you may or may not know, most modern aircraft continuously broadcast their current position over the 1090MHz band using the ADS-B protocol. [Edward] found that his old satellite receiver module was able to pick up the signals without too much trouble, and was more than happy to share how he did it.

The whole project cost him just under 5 Euros and requires the aforementioned satellite tuner as well as an ATMega48 microcontroller to decode the ADS-B messages. When the receiver is hooked up to a nice aerial and preamp he can listen in on planes within a 200km radius, but even with a simple piece of wire, he can locate aircraft up to 25 km away.

Raw ADS-B data isn’t terribly useful, so [Edward] put together a small application that plots nearby aircraft on a map for him. We imagine that it wouldn’t be too incredibly difficult to do the same sort of thing with the Google Maps API as well.

If you’re interested in putting together an aircraft tracking receiver of your own, be sure to swing by his site – he has a ton of useful information that will likely be a huge help along the way.

[Thanks, David]

Beginner Concepts: A Quartet Of Videos On Inductors

Inductors can be found in many of the devices you use every day, but if you’ve been working only with DC in your projects there’s a good chance you’ve never needed to know anything about them. Now’s your chance to pick up on the basics with this video tutorial series. [Afroman] put together four short videos that we’ve embedded after the break. Set aside fifteen minutes to watch them; you’ll be glad you did.

The first in the series starts out by explaining that an inductor is a coil of wire that serves a similar function as a capacitor with one major difference. A capacitor stores voltage, while an inductor stores current. In the second video, [Afroman] hooks up some inductors to a square-wave generator, then measures the resulting current characteristics using an oscilloscope. He shows the difference between inductor core material (air core versus ferrite core) and illustrates the properties that make inductors so useful as filters. The third video covers filtering circuits, and the fourth is the best explanation of why you need a flyback diode when driving a motor (an inductive load) that we’ve seen yet.

Continue reading “Beginner Concepts: A Quartet Of Videos On Inductors”