LED Art Hack Chat

Join us on Wednesday, July 1 at noon Pacific for the LED Art Hack Chat with Aaron Oppenheimer!

From the first time humans crawled into a cave with a bit of charcoal to sketch scenes from the world around them, artists have been searching for new media and new ways to express themselves. Natural products ruled for thousands of years, with pigments stolen or crafted from nature as well as wood, ivory, bone, and stone for carving. Time and experience guided our ancestors to new and better formulations and different materials, to the point that what qualifies as art and what we’d normally think of as technology have, in many cases, blended into one, with the artist often engineering projects of mammoth proportions and breathtaking beauty.

Aaron Oppenheimer co-founded color+light, a company that specializes in large-scale custom art installations for companies like Google, Nike, and Nissan. One of their projects, the “Oddwood Tree”, is displayed alongside other gigantic art pieces at Area15 on the Las Vegas strip. His most recent project, fluora, is a digital houseplant, with addressable LEDs in the leaves that can be controlled by a smartphone app or respond to stimuli in the environment.

Aaron will join us on the Hack Chat to discuss the LED as artistic medium. Join us as we learn what it takes to make enormous art that’s strong enough to interact with yet responsive enough to be engaging.

join-hack-chatOur Hack Chats are live community events in the Hackaday.io Hack Chat group messaging. This week we’ll be sitting down on Wednesday, July 1 at 12:00 PM Pacific time. If time zones have you down, we have a handy time zone converter.

Click that speech bubble to the right, and you’ll be taken directly to the Hack Chat group on Hackaday.io. You don’t have to wait until Wednesday; join whenever you want and you can see what the community is talking about.

Continue reading “LED Art Hack Chat”

Hackaday Links Column Banner

Hackaday Links: September 2, 2018

It’s (was, is?) the end of August, and that means the entire dreadlocked population of San Francisco is out in the middle of the Nevada Desert for a week. Yes, it’s Burning Man, and as always we have a host of builds that make you ask, ‘how did they do that, and how did they get that here’.

For the last few years, the greatest logistical feat of art cars is the 747. Yes, it’s the fuselage of a 747, turned into an art car. The top deck is a convertible. The biggest question surrounding this 747 is how do you transport this thing? You can’t fly it in (well, you could, once), it’s not going to fit on a train, and it’s extraordinarily long. Now we have an answer: they did it on a truck. The 747 was stationed in the Mojave, and from there it’s a relatively quick shot up Nevada to Black Rock City. Several power lines had to be raised, and you’re still looking at an enormous logistical endeavour.

I’m saying it now. Sphere, the 1998 movie with Dustin Hoffman. There’s a 25 meter diameter mirror ball that looks like the sphere in Sphere. It’s inflatable, so that takes care of the obvious questions, but we’re still asking how this thing looks in person, how massive wind storms are going to affect what is basically a gigantic sale sail, and what the reflections of the sun will actually do. I suppose being convex, you’re not going to get the accidental architectural parabolic mirror effect that melts cars, but one can always hope.

Want a neat story on the features of Burning Man that doesn’t get a lot of press? IEEE Spectrum did a feature on Black Rock City airport. For one week a year, it is the third busiest airport in Nevada, behind McCarren and Reno. It’s also a towered, yet uncontrolled airport. This makes no logical sense, but it’s something that can happen with FAA regs.

[alicestewwwart] has left us with a quandary. She’s creating highly artistic circuits out of ICs, discrete parts, and wire. These circuits are functional, but we don’t know what to call them. They’re not quite deadbug, because SMD parts don’t have legs, and ‘deadbug’ gets its name from upside down DIPs that looks like dead centipedes. It’s not Manhattan style, although this might be closer to Manhattan than deadbug. So what is it? Leave your answer in the comments.

Engineering And Artistry Meet An Untimely End At Burning Man

Burning Man is so many different things to so many people, that it defies neat description. For those who attend, it always seems to be a life-changing experience, for good or for ill. The story of one man’s Burning Man exhibition is a lesson in true craftsmanship and mind-boggling engineering, as well as how some events can bring out the worst in people.

For [Malcolm Tibbets], aka [the tahoeturner], Burning Man 2017 was a new experience. Having visited last year’s desert saturnalia to see his son [Andy]’s exhibition, the studio artist decided to undertake a massive display in his medium of choice — segmented woodturning. Not content to display a bamboo Death Star, [Malcolm] went big– really big. He cut and glued 31,000 pieces of redwood into rings of various shapes and sizes and built sculptures of amazing complexity, including endless tubes that knot and loop around and back into each other. Many of the sculpture were suspended from a huge steel tripod fabricated by [Andy], forming an interactive mobile and kinetic sculpture.

Alas, Burning Man isn’t all mellowness in the desert. People tried to climb the tripod, and overnight someone destroyed some of the bigger elements of the installation. [Malcolm] made a follow-up video about the vandalism, but you’ll want to watch the build video below first to truly appreciate the scale of the piece and the loss. Here’s hoping that [Malcolm]’s next display is treated with a little more respect, like this interactive oasis from BM 2016 apparently was.

Thanks to [Keith Olson] for the tip.

2,000 LEDs On Fire

What’s 18 feet tall, 12 feet wide, has 2,000 LEDs and turbine-driven blast furnaces? Believe it or not, it is a piece of kinetic sculpture created by [Therm] (a collective, not a person) for Burning Man 2016. The project is about 60% salvage, has a Raspberry Pi 3 helping its three human operators, and took a team of 30 about 9 months to complete.

The Raspberry Pi drives LED using fadecandy. You can see a video of the sculpture (three giant moths, to be exact) and a video about fadecandy, below. (We’ve covered a subtler fadecandy project before if you want to see a different take on it.)

Continue reading “2,000 LEDs On Fire”

Because Burning Man Needed More LEDs

There are a lot of blinky glowy things at Burning Man every year, and [Mark] decided he would literally throw his hat into the ring. He built a high visibility top hat studded with more RGB LEDs than common sense would dictate. It’s a flashy hat, and a very good example of the fashion statement a few hundred LEDs can make.

[Mark]’s top hat has 481 WS2812b addressable LEDs studded around the perimeter, a common LED choice for bright and blinky wearables. These LEDs are driven by a Teensy 3.1, with a Bluetooth transceiver, a GPS module, a compass, and gyro/accelerometer attached to the microcontroller. That’s a lot of hardware, but it gives [Mark] the capability of having the hat react to its own orientation, point itself North, and allow for control via a modified Nintendo NES controller.

The WS2812 LEDs draw a lot of power, and for any wearable project having portable power is a chief concern. [Mark]’s original plan was to use an 8x battery holder for the electronics enclosure, and use five AA batteries to power the hat. The total idle draw of the LEDs was 4.5 Watts, and with even a few LEDs blinking colors there was a significant voltage drop. The idea of powering the hat with AA batteries was discarded and the power source was changed to a 195 Watt-hour lithium ion battery bank that was topped off each day with a solar panel.

The hat is awesome, exceedingly bright, and something that gets a lot of attention everywhere  it goes. For indoor use, it might be too bright, but this could be fixed with the addition of a bit of black stretchy fabric, like what our own [Mike Szczys] did for his DEF CON hat. [Mark]’s hat is just version 1, and he plans on making a second LED hat for next year.

Sex And Blinky LEDs At Burning Man

[Bunnie] was at Burning Man this year, and to illuminate his camp members in the dark and dusty nights of the playa, he created a blinky badge. This isn’t just any badge stuffed with RGB LEDs; each of the badges were unique by the end of Burning Man. These badges were made unique not by twiddling dials or pressing buttons; all the color patterns were bred with badge sex.

This social experiment to replicate nature’s most popular means of creating more nature is built around a peer to peer radio. Each badge is equipped with a radio, a circle of RGB LEDs, and a bit of code that expresses the pattern of lights on the badge as a sequence of genes. When one badge gives consent to another badge, they ‘breed’, creating a new pattern of lights. If you’re wondering about the specifics of the act, each badge is a hermaphrodite, and each badge transmits a ‘sperm’ to fertilize the other plant’s ‘egg’. There’s even a rare trait included in the genome of the badge; each badge has a 3% chance of having a white pixel that moves around the circle of LEDs. [Bunnie] found this trait was more common after a few days, suggesting that people were selectively breeding their badges.

Of course, finding potential mates is a paramount concern for any sexual organism, and the sex badge has this covered, too. The 900MHz radio listens for other badges in close proximity, and when any are found their owners are displayed on an OLED display. This came in handy for [Bunnie] more than a few times – there’s no phones out there, and simply knowing your friends are within a hundred meters or so is a big help.

The entire badge platform is documented online, along with the code and spec for badge genes. Badges with some sort of wireless communication have been around for a while, but this is the first time that communication has been used for something more than sharing contact information or implementing a chat room. It’s a great idea, and something we hope to see more of in future con badges.

Hacklet 72 – Burning Man Projects

Burning Man is almost here! In just a few days, artists, hackers, makers, and engineers will converge on the Black Rock Desert in northern Nevada. They’ll endure the heat, the dust, and possibly a few bugs to create one of the largest outdoor art festivals in the world. Every year, the playa is covered with art cars, giant rolling barges, and fire-breathing animals covered in RGB LEDs. With so many projects to work on, it’s no surprise that quite a few Hackaday.io members (and Hackaday staffers) are burners. This week’s Hacklet is about some of the best Burning Man projects on Hackaday.io!

thedeepWe start with [David Nghiem] and “The Deep” – DC’s Sonic Jellyfish Art Cart. There’s just something calming about a watching a luminescent jellyfish floating serenely through the dark ocean. [David] and his team are recreating that effect in the desert with The Deep. They’re hanging a giant jellyfish in front of a golf cart. The medusa will be festooned with yards of silk and other types of fabric to create a flowing effect. Lighting will come from 8 RGB LED strips, controlled by 15 Teensy LCs. The Teensys will keep the lights flashing to the beat of the music. Burners can dance inside the sculpture, because this jellyfish thankfully has no sting.

anglerfishBicycles are the preferred mode of personal transportation at Burning Man. As you might imagine, it can be pretty hard to find your bike among all the other parked cycles. [Bob Baddeley] has made this a bit easier with Anglerfish for Bikes. Real anglerfish have an illicium, which is a stalk with a lighted tip that hangs just in front of their mouth. The bioluminescent light lures prey to the fish. [Bob] is using an RGB LED illuminated ball to lure him to his bike. This anglerfish started life as a blinky globe from Amazon. [Bob] removed the original electronics and replaced them with a Bluetooth radio on his own custom PCB. A simple press of a button gets the ball shimmering and blinking, leading [Bob] to his ride.

danceNext up is [Jeremy] with Interactive Disco Dance Floor. Inspired by Saturday Night Fever and the music video for Billy Jean, [Jeremy] is creating a dance floor that responds to those dancing on it. The floor is lit by 80 meters of 5050 RGB LEDs, controlled by ATmega168s. The ATmega168’s are connected to a capacitive sensor made up of a chicken wire grid. The system is sensitive enough to pick up feet even when wearing thick motorcycle boots. All the processors connect to a central computer via an RS-485 network. This allows the computer to take over and drive pre-programmed patterns to the floor. The PC side code is written in JavaScript, so it’s easy to modify.

jacketFinally, we have Hackaday.io’s own [Jasmine] with Glow Jacket. Walking around at night in Black Rock City can be dangerous. People running from party to party, high cyclists flying across the playa, you never know who might run into you! Having something to make sure you’re visible is a great start of a project. Keeping warm through the cold nights in the desert would be an added bonus. [Jasmine] sewed 32 feet of electroluminescent (EL) wire onto the back of a black parka. The wire ran to two AA battery-powered inverters hidden in the jacket. The hardest part turned out to be sewing all that EL wire to a jacket. Once all the stitching was done though, her husband [Ben] glows like a beacon in the night.

burning-thumb

Burners unite! [Jasmine] has set the Hacker Burners project page as a meeting place for all burners and fans of Burning Man. If you’re interested, join up! If you’d like to see more Burning Man projects, I’ve got you covered with our new Burning Man project list. If I missed your project, don’t hesitate to drop me a message on Hackaday.io. That’s it for this week’s Hacklet. As always, see you next week. Same hack time, same hack channel, bringing you the best of Hackaday.io!