Tiny 3x3x3 SMD LED Cube

led cube

LED cubes are cool, but they’re usually pretty big and clunky. [One49th] set out to make one of the smallest LED cubes we’ve seen yet, and he’s shared how he did it in his Instructable!

His first LED cube was the traditional kind, and it turned out pretty nice. But he wanted to go smaller — what about using SMD’s? What he did next was no simple feat — in fact, we’d be willing to call him an artist with a soldering iron. The array is just over one centimeter across.

Using a combination of vices and pliers he soldering each SMD onto his structure one by one. Each LED anode is tied together on each horizontal layer. Each cathode is tied together on each vertical column. This allows the TinyDuino to control any one LED by knowing which of the 9 columns and 3 layers the LED is on. Send a high signal to chosen layer, and a low signal to the column to light the LED. Doing this quickly allows you to create the illusion of different LEDs being on at the same time. Take a look through his image gallery to see just how tight the soldering quarters were, it’s definitely not something we’re planning on doing anytime soon!

Looking for a bigger cube? Check out this gorgeous 7x7x7 one that is capable of 142 frames per second!

Easy Capacitive Touch Sensors In Eagle

board

Capacitive sensing libraries for the Arduino and just about every other microcontroller platform have been around for ages now, but if you’d like to put a slightly complex cap sense pad in a PCB without a lot of work, you’re kind of out of luck. Not only do you need a proper education in how capacitors work, but a custom cap sense pad also requires some advanced knowledge of your preferred PCB layout program.

The folks over at PatternAgents have just the solution for this problem. They created an Eagle library of touch widgets that includes everything from buttons, linear and radial sliders, touchpads, and a whole lot more.

The simplest cap sense pad is just a filled polygon on the top layer of a board, but this simple setup isn’t ideal if you want to use Eagle’s autorouter. By playing with the restrict layers in Eagle, PatternAgents were able to create easy cap sense buttons that will work perfectly, without the problems of the autorouter placing traces willy-nilly.

There are more than enough parts to replicate a whole lot of touch interfaces – buttons can easily be made into a smallish keyboard, and the radial touch sensor will emulate the ‘wheel’ interface on an iPod. Very cool stuff, and we can’t wait to see these in a few more boards.

A Speaking Ultrasonic Distance Sensor

speak

[Klaus] wanted some sort of aid for parking his car, and after running across a $4 ultrasonic sensor, decided to build his own speaking distance sensor (.de, Google Translation).

Inside [Klaus]’ device is an Arduino Uno, an HC-SR04 ultrasonic distance sensor, and an Adafruit Wave Shield. Originally, this parking/distance sensor used a small TFT to display the distance to an object, but after a few revisions, [Klaus] redesigned the device to speak the current distance, courtesy of an SD card and a soothing female voice.

Right now, the voice is set up to speak the distance from an object to the sensor from 10 cm to 1 m in 5cm increments. This isn’t the limit of the sensor, though, and the device can be easily reconfigured to sense a distance up to four meters.

The board doesn’t have an amplifier or speaker, but with the addition of a small amplifier, [Klaus]’ device is loud enough to be heard in even the noisiest environments.

Video demo below.

Continue reading “A Speaking Ultrasonic Distance Sensor”

Fabricate Your Own 7-Segment Displays

We see more and more projects that use custom molds and casting materials. The latest is this custom seven segment display which [Ray74] put together. The idea of making your own LED displays couldn’t be much easier than this — everything but the LEDs and wire is available at the craft store.

He started by making models of each segment out of pink erasers. The lower left image of the vignette above shows the eraser segments super glued to some poster board. The decimal is a pencil eraser, with a fence of wood to contain the molding material. Amazing Mold Putty was mixed and pressed into place resulting in the mold shown in the upper right.

From there, [Ray] cast the clear epoxy three times. Once dried the clear pieces were sanded, which will shape them up physically but also serves to diffuse the light. They were then placed inside of another mold form and an epoxy pour — this time doped with black enamel paint — finishes the 7-segment module. The final step is to glue the LEDs on the back side and wire them up.

This definitely trumps the build which Hackaday Alum [Kevin Dady] pulled off using hot glue sticks as light pipes.

 

Retrotechtacular: An Ax Factory Of Yore

When your mind’s eye thinks of an ax factory you may envision workers loading blanks into a machine that refines the shape and profile before heading to an annealing furnace. But this is Retrotechtacular, and we’re tickled to feature a look at a different time in manufacturing history. This ax factory tour looks at every step in the manufacturing process at a factory in Oakland, Maine. It was shot on film in 1965 just a few months before the factory shut down. [Peter Vogt] did a great job of shooting and editing the reel, and an equally fine job of converting it to digital so that we can enjoy it on his YouTube channel.

Above you can see the automatic hammer — known as a trip hammer — that is driven by cam action. At this point a lot of work has already been done. Blanks were cut from steel bars by two workers. These were shaped on the trip hammer before being bent in half to create the loop for the ax handle. From there a piece of high-carbon steel was added to form the cutting surface. This brings us to the step above, shaping the two glowing-hot pieces into one.

We don’t want to undermine the level of craftsmanship, and the labor-intensive process shown off here. But we can’t end this write-up without at least mentioning the kitsch that is smoking cigarettes and pipes on the job. At one point a worker actually lights his pipe using a the glowing-hot ax head.

To give you an idea of how this contrasts with modern manufacturing, here’s How It’s Made episode on axes (although we think whats being made would more appropriately be called hatchets).

Continue reading “Retrotechtacular: An Ax Factory Of Yore”

Stealing $100 Million In Bitcoins

In early October of this year, online Bitcoin marketplace and ‘the eBay of drugs’ The Silk Road was taken down by the FBI. Just after the black vans took Silk Road head honcho [Dread Pirate Robberts] away, a new Bitcoin marketplace came onto the scene called Sheep Marketplace. Sheep Marketplace closed after revealing that 5400 bitcoins – or $5.8 million USD were stolen by the user EBOOK101 by exploiting a bug in the Sheep site.

Over this last weekend, it was revealed this bug in the Sheep Marketplace site wasn’t responsible for the loss of 5,400 coins, but instead 96,000 BTC, or $100 million USD, making this one of the largest thefts of all time.

Whoever was responsible for this theft didn’t make a clean getaway. Because the Bitcoin block chain records the history of every transaction, laundering bitcoins is harder than it seems. The most common method is to ‘tumble’ the bitcoins – sending them through multiple wallets, combining and recombining them, until tracking groups of bitcoins just becomes too hard.

[sheeproadreloaded2] over on Reddit managed to track these bitcoins to this bitcoin address, an amazing feat that also means there are 96,000 coins in a wallet somewhere that can’t be spent or cashed out without the thief telling the world who he is.

As far as crimes of the century go, this one is at least in the top ten. Unless the thief behind this heist is extraordinarily smart, though, his identity will most likely be found out eventually.

New Contest: Win One Of 20 Microchip Fubarino SD Boards

We had a blast with the Trinket Contest in October and November and can’t wait to see what you can come up with for this month’s competition. Microchip Technology is one of our advertisers and they offered us 20 Fubarino SD boards to give away as prizes. The challenge for you is to add our URL as an Easter Egg in your own microcontroller project. Rise to the top of our seemingly arbitrary system for picking winners and one will be delivered to your door for your future hacking pleasure.

Obviously we mean http://hackaday.com when we say URL, but what constitutes an Easter Egg? We figure it’s anything that is not apparently obvious in a piece of hardware. We built a quick example to get you thinking. Shown off in the clip after the break is a clock that displays our web address every day at 1:37pm. What did we pick that time? Because our clock displays in 24-hour time format and 13:37 is leet. See the code we used in our repo.

We thought of a few others, like making an embedded gaming that uses the Konami Code to reveal the Easter Egg, or a man-in-the-middle device that attaches to your keyboard and redirects your feeble attempts to load Facebook by closing the tab and opening Hackaday. The sky’s the limit with how creative these things can be!

Follow these rules to submit your qualifying entry:

  • You must somehow hide http://hackaday.com in your microcontroller project (embedded Linux doesn’t count unless you do some type of bare-metal programming)
  • Preference will be given to projects that are both clever and well documented. Notice we made a video, and posted code and an explanation of our project.
  • Write an email that has “[Fubarino]” in the title, includes the information on your documented entry, and lists your name and mailing address. Your name and mailing address will be used for shipping only and NOT for anything else. Emails should be sent to: contests@hackaday.com
  • Entries must be received before 12:00am Pacific time on 12/19/2013.
  • Employees and their families of Hackaday, SupplyFrame, and Microchip Technology are not eligible to win.

What are you waiting for? Dust off those chips and get hacking!

Continue reading “New Contest: Win One Of 20 Microchip Fubarino SD Boards”