LavaAMP Spectrum Analzyer

lavaamp

Is your dusty Lava Lamp just not cool enough anymore? What if you could make it bubble to the music? [Christian] and [Eric] managed to do just that.

No, they aren’t regular Lava Lamps. In fact, they look like oversize jam jars, but the video of them in action is pretty cool! They designed and built this system for the UIST 2013 Student Innovation Contest, and while there isn’t too much information on the actual build, the contest required everyone to use the exact same kit. The kit consists of 8 aquarium pumps, a PumpSpark controller board, assorted tubing and fittings and an optically-isolated serial interface for use with an Arduino or another kind of microcontroller. From there, it’s pretty easy to guess the rest — analyzing the audio, and timing the pumps according to the various levels.

Other competition entries of note include an awesome game of WaterPong, a Water Bottle Bagpipe, and even an Xbox H2O!

Stick around after the break to see the LavaAMP bubble to the bass.

Continue reading “LavaAMP Spectrum Analzyer”

Crab-ble – A Table That Walks

124_dsc0417-xl2

Do you have a heavy kitchen table? Wish you could move it all by yourself? [Ekaggrat] set out to design one for this year’s Beijing Design Week back in September.

It’s based off of the awesome Strandbeest design by [Theo Jansen], and it looks great. [Ekaggrat] made several prototypes of the “Crab Table” out of ABS plastic, and was planning to make a full size one using bamboo rods, which were the theme of the design week. Unfortunately the team ran out of time and was not able to make the full scale model. The prototypes walk around all by themselves with geared DC motors, but the plan for the full size one was to simply be able to push it.

We’ve seen lots of walking tables before, but there’s just something about the mechanical beauty of this design that we love. It’d be heavy — but imagine it in chrome! Maybe just the plastic could be plated… Stick around after the break to see it scuttle about!

Continue reading “Crab-ble – A Table That Walks”

A 555-Based, Two-Channel Remote Control Circuit

NE555N

[fahadshihab], a young tinkerer, shared his circuit design for a simple remote control using 555 timers.  Using a 555 calculator, he designed a clock circuit that would run at 11.99 Hz. Two transistors are connected to inputs (presumably button switches). One sends the plain clock signal, and one sends the inverted clock signal. A matching circuit at the other end will separate the channels. All it requires is connecting the two circuits in order to synchronize them. It would be easy enough to interface this with an oscillator, an IR LED, or a laser for long-range control.

The great thing about this circuit is its simplicity. It’s often so easy to throw a microcontroller into the mix, that we forget how effective a setup like this can be. It could also be a great starter circuit for a kid’s workshop, demonstrating basic circuits, timers, and even a NOT gate. Of course, it would be a good refresher for those without a lot of circuit knowledge too. Once you’ve mastered this, perhaps an AM transmitter is next?

Using Ultrasonic Sensors To Measure And Log Oil Tank Levels

[Mike] lives in a temperate rainforest in Alaska (we figured from his website’s name) and uses a 570 gallon oil tank to supply his furnace. Until now, he had no way of knowing how much oil was left in the tank and what his daily usage was. As he didn’t find any commercial product that could do what he wanted, he designed his own solution. In his write-up, [Mike] started by listing all the different sensors he had considered to measure the oil level and finally opted for an ultrasonic sensor. In his opinion, this kind of sensor is the best compromise between cost, ease of use, range and precision for his application. The precise chosen model was the ping))) bought from our favorite auction website for around $2.5.

[Mike] built the custom enclosure that you can see in the picture above using PVC parts. Enclosed are the ultrasonic sensor, a temperature sensor and an LED indicating the power status. On the other side of the CAT5 cable can be found an Arduino compatible board with an XBee shield and a 9V battery. Using another XBee shield and its USB adapter board, [Mike] can now wirelessly access the tank oil level log from his computer.

Hack Your Datasheets Using Datasheet.net

datasheet-dot-net-snippet-example

If you use datasheets (which is probably every reader of Hackaday) you need to check out this tool that seeks to add modern features to the decades-old component specification delivery system. That link takes you to the announcement of the launch of Datasheet.net.

What you see above is the biggest feature the service brings to the table, the ability to create “snippets” from datasheets by clicking and dragging the area you’d like to save (you can even get a public link to the snippet). Once you have selected a snippet there are a few tools that allow you to make annotations on it. We’ve used the rectangle tool to highlight the clock speed and divider settings in this snippet for an ATmega328 uC. The interface also offers the ability to draw arrows, freehand, or to add text to the snippet. At the bottom of this example we used the description area to notate the fuse settings (in hex) which we most often use with this chip. These snippets and annotations can then be shared with other users of the service, and there’s also a comments section below the snippet for your team to use. See examples of this in the video below.

This solves one of our biggest beefs with PDF datasheets — the ability to jump back and forth and to easily find commonly used sections. This datasheet is 567 pages long and not fun to paw through looking for the same info repeatedly. It also offers rudimentary “favorite” flagging to keep a list of your oft-used sheets — but we’d like to see more options for categorizing our collection. We also find it hard to get by without the Table of Contents functionality we’re used to in our normal document view (evince). We’ve already pestered the lead developer, [Ben Delarre], to add this feature. He’s the same guy who came up with the schematic sharing site CircuitBee. Now would be a great time to mention that this service is owned by Hackaday’s parent company SupplyFrame.

Datasheet.net has a mammoth source of datasheets available through the search, but the list of planned feature additions includes datasheet upload. Also on the list is a “Discussion” feature which sounds interesting to us. What if, through the discussion engine, searching for datasheets also turned up a list of open hardware projects that use this part? We are also drooling over the ability to embed these snippets directly in webpages. [Ben] tells us that’s already built but they didn’t have time to add it to the UI before launch. Gone will be the days of taking screenshots of PDFs for your blog writeup!

PDF delivery of datasheets revolutionized access to information about electronic components. We’re hoping that this marks the next evolution. In addition to better working features, wouldn’t it be nice if you could actually get notifications when new datasheet revisions or errata were published?

Continue reading “Hack Your Datasheets Using Datasheet.net”

A Collective Pitch Quadcopter

Quadcopters aren’t a new thing, but for all the advances in multi-rotor craft, they all still fall into the paradigm of, ‘stick a prop on a motor and repeat three more times. [Curtis Youngblood], one of the top RC heli pilots in the world, came up with a very cool drive system for a quad, requiring only one motor and granting each blade collective pitch that allows for absolutely insane acrobatic ability.

There’s only one motor inside the Stingray 500, as [Curtis] calls his new toy. It’s at the rear of this quad’s H-frame, attached to a shaft running down the spine with a pair of pulleys. All four rotors are driven by this spinning shaft.

Because [Curtis] is an acrobatic pilot, he needed a way to control his ‘copter in more than one direction. To do this, he added four servos on each arm of the quad, giving each rotor collective pitch, just like the tail rotor of a real helicopter. The result is a quadcopter that can fly upside-down with the greatest of ease, perform barrel rolls, and all the other maneuver a true 3D RC ‘copter can do.

The awesome guys at Flite Test had [Curtis] visit their hangar and had him do an awesome demo flight. You can check out that video below.

Continue reading “A Collective Pitch Quadcopter”

Tiny 3x3x3 SMD LED Cube

led cube

LED cubes are cool, but they’re usually pretty big and clunky. [One49th] set out to make one of the smallest LED cubes we’ve seen yet, and he’s shared how he did it in his Instructable!

His first LED cube was the traditional kind, and it turned out pretty nice. But he wanted to go smaller — what about using SMD’s? What he did next was no simple feat — in fact, we’d be willing to call him an artist with a soldering iron. The array is just over one centimeter across.

Using a combination of vices and pliers he soldering each SMD onto his structure one by one. Each LED anode is tied together on each horizontal layer. Each cathode is tied together on each vertical column. This allows the TinyDuino to control any one LED by knowing which of the 9 columns and 3 layers the LED is on. Send a high signal to chosen layer, and a low signal to the column to light the LED. Doing this quickly allows you to create the illusion of different LEDs being on at the same time. Take a look through his image gallery to see just how tight the soldering quarters were, it’s definitely not something we’re planning on doing anytime soon!

Looking for a bigger cube? Check out this gorgeous 7x7x7 one that is capable of 142 frames per second!