Hackaday Prize Entry: Text To Speech The Hard Way

Studies have shown reading to children leads to improved academic performance later in life, a trait that will make them more competitive in the workforce, and ultimately happier human beings. It follows, then, that having a robot read to children will also lead to happier and more productive adults, while normalizing the cyborg uprising takeover of the AI apocalypse of 2037.

It’s a good thing the above paragraph is a complete non-sequitur and has nothing to do with this Hackaday Prize entry. The TextEye, [Markus]’ entry for the Assistive Technology portion of the Hackaday Prize, is a handheld device that translates the written word into speech, useful for anyone who either can’t see well or can’t read gooder. Yes, it will also read to children, but so did Teddy Ruxpin.

If you’re keeping track, this isn’t the first time [Markus] has entered this project in a Hackaday Prize contest. The first time was six months ago in the Hackaday / Adafruit Raspberry Pi Zero contest. [Markus] was inspired by a group of blind computer science students using specialized hardware that allowed them to study the same thing as everyone else.

Since the first few project logs, a lot has changed in this project. You can buy a Pi Zero easily, and the updated Pi Zero 1.3 now comes with a camera connector. [Markus] is swapping out his Pi Model A and USB webcam for the Pi Zero and Pi camera. The software remains the same — GraphicsMagick, Tesseract OCR, Festival and Wiring Pi handle reading text and turning those words into speech — with a slight refactoring of the code. It’s a great use for the Pi Zero, and an excellent example of an Assistive Technology, and we’re happy to see it again in the Hackaday Prize.

A Robotic 808 Drum Machine

If you spent the 1980s hanging out at your local record store, and you don’t have a hankering for spandex and bouffant rock-god hairstyles, the chances are you’ll have more than a few pieces of electronic music from the period in your collection. The proliferation of electronica during that era came through the arrival of relatively inexpensive mass-market digital polyphonic instruments, edging out the sounds of monophonic analog synthesisers for a subsequent generation to rediscover in a later decade. Individual instrument models became icons and entered the musical vernacular of the day, the Ensoniq Mirage sampling synthesiser, the Yamaha DX7 FM synthesiser, or the Roland TR-808 drum machine.

It is the Roland TR-808 that inspired today’s subject, the MR-808 robotic drum machine, from [Moritz Simon Geist]. A percussion sequencer featuring real instruments all built into a cabinet styled to resemble a huge Roland 808. Originally built as a performance instrument, but since reinvented as a piece of installation artwork that visitors can program for themselves.

Block diagram of the MR-808
Block diagram of the MR-808

There is a comprehensive description of the machine’s design and build on the creator’s website, as well as a more high-level introduction. A significant amount of effort was put in to creating mechanical instruments as close as possible to the Roland sounds, with each instrument being operated by solenoids driven by a MIDI-controlled Arduino Mega. A second Arduino, this time an Uno, controls lighting that follows the instruments.

The interactive part of the installation comes from a sequencer front-end running in a web browser on a Nexus 7 tablet, this appears to be served from a Raspberry Pi which supplies MIDI to the MR-808.

The results can be seen in the video below the break, and judging by the reaction of the audience the machine is rather popular.

Continue reading “A Robotic 808 Drum Machine”

Hackaday Links: September 18, 2016

No Star Trek until May, 2017, at which time you’ll have to pay $5/month to watch it with ads. In the meantime, this is phenomenal and was shut down by Paramount and CBS last year ostensibly because Star Trek: Discovery will be based around the same events.

Tempest in a teacup. That’s how you cleverly introduce the world’s smallest MAME cabinet. This project on Adafruit features a Pi Zero, a 96×64 pixel color OLED display, a few buttons, a tiny joystick, and a frame made out of protoboard. It’s tiny — the height of this cabinet just under two wavelengths of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the cesium 133 atom. Being based on the Pi Zero, it’s a capable arcade cabinet, although we would struggle to find a continuous rotation pot small enough to play Tempest the way it should be played. Check out the video.

[Graham] sent an interesting observation in on the tip line. It’s an election year in the US, and that can mean only one thing. It’s coroplast season. Coroplast is that strange material used for political signage, famous for its light weight, being waterproof, and reasonably strong, depending on how you bend it. There is a severe lack of coroplast builds, but if you have some be sure to send them in.

The ESP32, the followup to the hugely popular ESP8266 , is shipping. [Elliot] got his hands on one and found it to be a very promising chip, but the ESP3212 modules I bought from Seeed haven’t arrived yet. That hasn’t stopped [Ptwdd] from making a breakout board for the ESP3212, though. We don’t know if it works, but it’s just a breakout board, anyway.

The usual arguments for drones involve remote sensing, inspection, and generally flying around for a very long time. Quadcopters don’t do this, but fixed wings can. Over on DIYDrones, [moglos] just flew 425km on a single charge. The airframe is a 3 meter Vigilant C1 V tail, using the stock 300kV motor. The battery is a bunch of Panasonic 18650 cells arranged in 6S 9P configuration for 30600mAh. The all-up weight is 5.7kg. This is significant, and we’re seeing the first glimmer of useful tasks like pipeline monitoring, search and rescue, and mapping being done with drones. It is, however, less than half the range a C172 can fly, but batteries are always getting better. Gas goes further because it gets lighter as you fly.

Spectrum Analyzer With 555 Fits In A Tin

[VK2ZAY] has a thing for 555 chips. Before the ready availability of microcontrollers, the 555 was the hardware hacker’s swiss army knife. After all, even though the chip is supposed to be a timer, it is really a bunch of simple pieces you can use to make a timer: a pair of comparators, a few transistors, and a flip-flop. You can use those parts in many different ways, and a timer is just one of them.

[VK2ZAY] used one as a key component in a simple spectrum analyzer. The 555 generates a ramp voltage which alters the frequency of an oscillator. The oscillator mixes with the input signal and a fixed-frequency superregenerative detector creates an output voltage proportional to the input signal strength. You can see a video of the whole setup, below.

Continue reading “Spectrum Analyzer With 555 Fits In A Tin”

LVL1 Hackerspace Builds A DOOMcano

When you need a DOOMcano, there’s no real substitute. And they’re not just selling these things on the street-corner. Nope, friend, you’ve got to get the hackerspace together and build your own.

plastic_thumbnailFor a fundraiser, and we suspect for the fun of it, the folks at LVL1 in Louisville, KY built a metal case with four (4!) flame-thrower jets. The idea is that you donate, and they’ll burn stuff for you.

Or you could build your own, following their detailed build log. LVL1 earns clever points for the use of 3D printer nozzles as gas jets, and for the laser-cut boxes that hold spray-cans of combustible fluid with servos to depress the buttons. It’s Rube-Goldbergy, but it works. Battery-powered grill igniters provide the spark, and an Arduino provides the control.

If you need more fire-breathing madness, check out this duck decoy (naturally) or this RC flamethrower turret build for further inspiration. And be safe!

Forge Your Own Neon Signs With EL Wire

Neon tube signs radiate an irresistible charm, which has been keeping them alive to this day. The vintage, orange glow is hard to substitute with modern means of illumination, but never trust a neon sign that you didn’t forge yourself. [NPoole] shows you how to build remarkably realistic faux neon tube signs from plastic tubing and EL wire.

After sourcing some polycarbonate tubing from a pet shop, where it’s more commonly used in aquariums, [NPoole] simply inserted some orange EL wire into the tubing. He heated one end of the tubing with a heat gun and twisted it off, sealing one end of the tube and welding the EL wire in place. [Npoole] then went on bending his neon tube to shape, repeatedly heating it up with the heat gun, bending it carefully, and blowing into the open end of the tube to prevent kinking of the tube.

Continue reading “Forge Your Own Neon Signs With EL Wire”

Clustering A Lot Of Raspberry Pi Zeros

It became something of a cliché a few years ago in online discussions, whenever a new single board computer was mentioned someone would pop up and say something like “Imagine a Beowulf cluster…“. Back then it was said largely in jest, but with the current generation of boards it’s a distinct possibility. Who hasn’t looked at a Raspberry Pi and idly thought about a cluster of them, or even created one!

[Electronoob] did just that, creating a variety of Raspberry Pi cluster configurations, the most impressive of which is a stack of 32 Pi Zeros mounted together with stand-offs. The plan was to network it via USB, for which he initially considered building a backplane, but was put off by the cost of vertical USB connectors and instead went for a wired approach. If there is a lesson to be learned from his experiences it is that buying very cheap USB cables is a minefield: his pile of eBay specials turned out to have significant numbers of faults. He’s now faced with a stark choice, solder  32 sets of USB pads on the base of each Zero or buy better cables.

The stack of Zeros is pretty impressive, but so what, you think. It’s still not working properly. But the Zero cluster isn’t his only work. He’s also created a set of very nicely executed Ethernet clusters using the larger Pi boards, and the way he’s mounted them on top of compact Ethernet switches sets them apart from some of the more spaghetti-like Pi clusters.

It’s true a Pi cluster won’t cut it in the world of supercomputers, you could almost certainly buy more bang for your buck without too much effort. But it does represent a very accessible way to learn about cluster computing, and you have to admit it a stack of Zeros does look rather impressive.

We’ve seen quite a few Pi clusters here since 2012, the biggest of which is probably this 120 node behemoth, complete with screens.