One of the promises of 3D printing is that you can mass produce objects at home, printing out multiple copies of whatever you want. Unfortunately, the reality is a bit different: once you have printed something out, you usually need to remove it manually from the print bed. Unless you are [Replayreb], that is: he’s come up with a neat hack to remove a print from the print bed by using a custom bit of G-code to move the print head to knock the print off, into a waiting box.
Oxford is a city world-famous for its university, and is a must-see stop on the itinerary of many a tourist to the United Kingdom. It features mediaeval architecture, unspoilt meadows, two idylic rivers, and a car plant. That’s the part the guide books don’t tell you, if you drive a BMW Mini there is every chance that it was built in a shiny new factory on the outskirts of the historic tourist destination.
Morris produced a range of run-of-the-mill saloon cars in this period, and their typical power unit was one of the four-cylinder engines from the film. It’s a sidevalve design with a three-bearing crank, and it lacks innovations such as bore liners. The metallurgy and lubrication in these engines was not to the same standard as an engine of today, so a prewar Morris owner would not have expected to see the same longevity you’d expect from your daily.
It’s a Holy Grail among hackerspaces, the possession of a pick-and-place machine. These robotic helpers for placing surface-mount components on PCBs are something of a gateway to electronic production, but they can carry a fearsome cost. Happily for the cash-strapped would-be electronic manufacturer, it is possible to build a pick-and-place for yourself. [Mcuoneclipse] has demonstrated this with a rather impressive build that works with the freely available OpenPnP software.
Superficially it shares much with what you might expect from a small CNC mill, in that it has a frame made from extruded aluminium that carries rails that trace an X and a Y axis supporting a tool head. But instead of a blade it has a box made from laser-cut ply that contains a camera and a vacuum pick-up tool that can collect a component from the tapes and deposit it in the correct point on the board. At the machine’s heart is a Smoothieboard, and the work is done by an assortment of solenoid valves and actuators. A huge amount of attention to detail has been paid to this build, with a holder for all the interchangeable nozzles for different component sizes, laser-cut mountings for all the motorised components, and automatic feeders for the SMD tapes all being carefully designed and built. Several iterations of the design are presented, in particular around the head itself which has passed through more than one form to remove as much vibration as possible. But don’t take it from us, have a look at the video we’ve pasted in below the break.
This isn’t the first pick-and-place machine we’ve brought you here at Hackaday. If you already have a 3D printer, would you consider this upgrade?
Most Hackaday readers will have heard of [Clive Sinclair], the British inventor and serial entrepreneur whose name appeared on some of the most fondly-recalled 8-bit home computers. If you aren’t either a Sinclair enthusiast or a Brit of a Certain Age though, you may not also be aware that he dabbled for a while in the world of electric vehicles. In early 1985 he launched the C5, a sleek three-wheeler designed to take advantage of new laws governing electrically assisted bicycles.
The C5 was a commercial failure because it placed the rider in a vulnerable position almost at road level, but in the decades since its launch it has become something of a cult item. [Rob] fell for the C5 when he had a ride in one belonging to a friend, and decided he had to have one of his own. The story of his upgrading it and the mishaps that befell it along the way are the subject of his most recent blog post, and it’s not a tale that’s over by any means.
The C5 was flawed not only in its riding position, the trademark Sinclair economy in manufacture manifested itself in a minimalist motor drive to one rear wheel only, and a front wheel braking system that saw bicycle calipers unleashed on a plastic wheel rim. The latter was sorted with an upgrade to a disc brake, but the former required a bit more work. A first-generation motor and gearbox had an unusual plywood housing, and the C5 even made it peripherally into our review of EMF Camp 2016, but it didn’t quite have the power to start the machine without pedaling. Something with more grunt was called for, and it came in the form of a better gearbox which once fitted allowed the machine to power its way to the Tindie Cambridge meetup back in April. Your scribe had a ride, but all was not well. After a hard manual pedal back across Cambridge to the Makespace it was revealed that the much-vaunted Lotus chassis had lived up to the Sinclair reputation for under-engineering, and bent. Repairs are under way for the upcoming EMF Camp 2018, where we hope we’ll even see it entering the Hacky Racers competition.