Illustrated Kristina with an IBM Model M keyboard floating between her hands.

Keebin’ With Kristina: The One With The KiCad Plugin

A low-profile split keyboard with a sliding, round track pad on each half.
Image by [fata1err0r81] via reddit
The most striking feature of the Tenshi keyboard has to be those dual track pads. But then you notice that [fata1err0r81] managed to sneak in two extra thumb keys on the left, and that those are tilted for comfort and ease of actuation.

The name Tenshi means ‘angel’ in Japanese, and creator [fata1err0r81] says that the track pads are the halos. Each one slides on a cool 3D-printed track that’s shaped like a half dovetail joint, which you can see it closer in this picture.

Tenshi uses a pair of RP2040 Zeros as controllers and runs QMK firmware. The track pads are 40 mm each and come from Cirque. While the Cirques have been integrated into QMK, the pull request for ZMK has yet to be merged in. And about those angled keys — [fata1err0r81] says they tried risers, but the tilting feels like less effort. Makes total sense to me, but then again I’m used to a whole keyboard full of tilted keys.

Continue reading “Keebin’ With Kristina: The One With The KiCad Plugin”

Magnesium And Copper Makes An Emergency Flashlight

Many of us store a flashlight around the house for use in emergency situations. Usually, regular alkaline batteries are fine for this task, as they’ll last a good few years, and you remember to swap them out from time to time. Alternatively, you can make one that lasts virtually indefinitely in storage, and uses some simple chemistry, as [JGJMatt] demonstrates.

The flashlight uses 3D printing to create a custom battery using magnesium and copper as the anode and cathode respectively. Copper tape is wound around a rectangular part to create several cathode plates, while magnesium ribbon is affixed to create the anodes. Cotton wool is then stuffed into the 3D-printed battery housing to serve as a storage medium for the electrolyte—in this case, plain tap water.

The custom battery is paired with a simple LED flashlight circuit in its own 3D-printed housing. The idea is that when a blackout strikes, you can assemble the LED flashlight with your custom battery, and then soak it in water. This will activate the battery, producing around 4.5 V and 20 mA to light the LED.

It’s by no means going to be a bright flashlight, and realistically, it’s probably less reliable than just keeping a a regular battery-powered example around. Particularly given the possibility of your homebrew battery corroding over the years unless it’s kept meticulously dry. But that’s not to say that water-activated batteries don’t have their applications, and anyway it’s a fun project that shows how simple batteries really are at their basic level. Consider it as a useful teaching project if you have children interested in science and electricity!

Tulip Is A Micropython Synth Workstation, In An ESP32

We’re not sure exactly what Tulip is, because it’s so many things all at once. It’s a music-making environment that’s programmable in Python, runs on your big computer or on an ESP32-S3, and comes complete with some nice sounding synth engines, a sequencer, and a drum machine all built in. It’s like your dream late-1980s synthesizer workstation, but running on a dev board that you can get for a song.

And because Tulip is made of open-source software and hardware, you can extend the heck out of it. For instance, as demonstrated in this video by [Floyd Steinberg], you can turn it into a fully contained portable device by adding a touchscreen. That incarnation is available from Makerfabs, and it’s a bargain, especially considering that the developer [Brian Whitman] gets some of the proceeds. Or, because it’s written in portable Python, you can run it on your desktop computer for free.

The most interesting part of Tulip for us, as programmer-musicians, is that it boots up into a Micrypython REPL. This is a synth workstation with a command-line prompt as its primary interface. It has an always-running main loop, and you make music by writing functions that register as callbacks with the main loop. If you were fast, you could probably live-code up something pretty interesting. Or maybe it wants to be extended into a physical musical instrument by taking in triggers from the ESP32’s GPIOs? Oh, and did we mention it sends MIDI out just as happily as it takes it in? What can’t Tulip do?

We’ve seen some pretty neat minimalist music-making devices lately, but in a sense Tulip takes the cake: it’s essentially almost entirely software. The various hardware incarnations are just possibilities, and because it’s all open and extremely portable, you can freely choose among them. We really like the design and sound of the AMY software synthesizer engine that powers the Tulip, and we’re sure that more synthesizer models will be written for it. This is a music project that you want to keep your eyes on in the future.